Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/110453
Titel: Resistive switching in ferroelectric Bi2FeCrO6 thin films and impact on the photovoltaic effect
Autor(en): Walch, David S.
Yun, Yeseul
Ramakrishnegowda, Niranjan
Mühlenbein, Lutz
Lotnyk, Andriy A.In der Gemeinsamen Normdatei der DNB nachschlagen
Himcinschi, Cameliu ConstantinIn der Gemeinsamen Normdatei der DNB nachschlagen
Bhatnagar, Akash
Erscheinungsdatum: 2022
Art: Artikel
Sprache: Englisch
Zusammenfassung: The multiferroic character of Bi2FeCrO6 (BFCO), that is, the coexistence of ferroelectricity and ferromagnetism, has been predicted and demonstrated in different studies. Intriguingly, the material system also exhibits a reduced band gap, in addition to bulk-driven photovoltaic effect. The co-existence of all these attributes in a single system is a rare occurrence and paves way to a multitude of practical applications, with ferroelectric solar cell as one of them. In this work, epitaxially grown BFCO thin films, deposited with pulsed laser deposition on single crystalline SrTiO3 (STO) substrates, reveal a self-ordered ionic arrangement which is proven with X-ray and transmission electron micrcoscope (TEM) measurements. A lowered band gap and a higher conductivity lead to a superior photovoltaic performance compared to a BiFeO3 (BFO) reference film. Scanning probe microscopy (SPM) is used to test locally the ferroelectric switching properties. Poling with electric field not only caused a reliable change in the state of polarization, but also resulted in substantial changes in the resistance of the regions. Macroscopic measurements using transparent In2O3:Sn (ITO) electrodes demonstrate a bi-directional multi-stage resistive switching, which in turn influences the photovoltaic performance of the heterostucture.
URI: https://opendata.uni-halle.de//handle/1981185920/112408
http://dx.doi.org/10.25673/110453
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-NC 4.0) Creative Commons Namensnennung - Nicht kommerziell 4.0 International(CC BY-NC 4.0) Creative Commons Namensnennung - Nicht kommerziell 4.0 International
Journal Titel: Advanced electronic materials
Verlag: Wiley-VCH Verlag GmbH & Co. KG
Verlagsort: Weinheim
Band: 8
Heft: 10
Originalveröffentlichung: 10.1002/aelm.202200276
Seitenanfang: 1
Seitenende: 9
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Adv Elect Materials - 2022 - Walch.pdf2.38 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen