Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/110729
Title: An improved method for the segmentation of roots from X-ray computed tomography 3D images : Rootine v.2
Author(s): Phalempin, MaximeLook up in the Integrated Authority File of the German National Library
Lippold, Eva
Vetterlein, DorisLook up in the Integrated Authority File of the German National Library
Schlüter, SteffenLook up in the Integrated Authority File of the German National Library
Issue Date: 2021
Type: Article
Language: English
Abstract: Background: X-ray computed tomography is acknowledged as a powerful tool for the study of root system architecture of plants growing in soil. In this paper, we improved the original root segmentation algorithm “Rootine” and present its succeeding version “Rootine v.2”. In addition to gray value information, Rootine algorithms are based on shape detection of cylindrical roots. Both algorithms are macros for the ImageJ software and are made freely available to the public. New features in Rootine v.2 are (i) a pot wall detection and removal step to avoid segmentation artefacts for roots growing along the pot wall, (ii) a calculation of the root average gray value based on a histogram analysis, (iii) an automatic calculation of thresholds for hysteresis thresholding of the tubeness image to reduce the number of parameters and (iv) a false negatives recovery based on shape criteria to increase root recovery. We compare the segmentation results of Rootine v.1 and Rootine v.2 with the results of root washing and subsequent analysis with WinRhizo. We use a benchmark dataset of maize roots (Zea mays L. cv. B73) grown in repacked soil for two scenarios with differing soil heterogeneity and image quality. Results: We demonstrate that Rootine v.2 outperforms its preceding version in terms of root recovery and enables to match better the root diameter distribution data obtained with root washing. Despite a longer processing time, Rootine v.2 comprises less user-defined parameters and shows an overall greater usability. Conclusion: The proposed method facilitates higher root detection accuracy than its predecessor and has the potential for improving high-throughput root phenotyping procedures based on X-ray computed tomography data analysis.
URI: https://opendata.uni-halle.de//handle/1981185920/112684
http://dx.doi.org/10.25673/110729
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Plant methods
Publisher: BioMed Central
Publisher Place: London
Volume: 17
Original Publication: 10.1186/s13007-021-00735-4
Page Start: 1
Page End: 19
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s13007-021-00735-4.pdf6.8 MBAdobe PDFThumbnail
View/Open