Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/111020
Title: Luciferase expressing preclinical model systems representing the different molecular subtypes of colorectal cancer
Author(s): Rotermund, Arne
Staege, Martin SebastianLook up in the Integrated Authority File of the German National Library
Brandt, Sarah
Lützkendorf, JanaLook up in the Integrated Authority File of the German National Library
Lucas, Henrike
Mueller, Lutz P.
Mueller, Thomas
Issue Date: 2023
Type: Article
Language: English
Abstract: olorectal cancer (CRC) is a heterogeneous disease. More insight into the biological diversity of CRC is needed to improve therapeutic outcomes. Established CRC cell lines are frequently used and were shown to be representative models of the main subtypes of CRC at the genomic and transcriptomic level. In the present work, we established stable, luciferase expressing derivatives from 10 well-established CRC cell lines, generated spheroids and subcutaneous xenograft tumors in nude mice, and performed comparative characterization of these model systems. Transcriptomic analyses revealed the close relation of cell lines with their derived spheroids and xenograft tumors. The preclinical model systems clustered with patient tumor samples when compared to normal tissue thereby confirming that cell-line-based tumor models retain specific characteristics of primary tumors. Xenografts showed different differentiation patterns and bioluminescence imaging revealed metastatic spread to the lungs. In addition, the models were classified according to the CMS classification system, with further sub-classification according to the recently identified two intrinsic epithelial tumor cell states of CRC, iCMS2 and iCMS3. The combined data showed that regarding primary tumor characteristics, 3D-spheroid cultures resemble xenografts more closely than 2D-cultured cells do. Furthermore, we set up a bioluminescence-based spheroid cytotoxicity assay in order to be able to perform dose–response relationship studies in analogy to typical monolayer assays. Applying the established assay, we studied the efficacy of oxaliplatin. Seven of the ten used cell lines showed a significant reduction in the response to oxaliplatin in the 3D-spheroid model compared to the 2D-monolayer model. Therapy studies in selected xenograft models confirmed the response or lack of response to oxaliplatin treatment. Analyses of differentially expressed genes in these models identified CAV1 as a possible marker of oxaliplatin resistance. In conclusion, we established a combined 2D/3D, in vitro/in vivo model system representing the heterogeneity of CRC, which can be used in preclinical research applications.
URI: https://opendata.uni-halle.de//handle/1981185920/112974
http://dx.doi.org/10.25673/111020
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Cancers
Publisher: MDPI
Publisher Place: Basel
Volume: 15
Issue: 16
Original Publication: 10.3390/cancers15164122
Page Start: 1
Page End: 21
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
cancers-15-04122.pdf6.8 MBAdobe PDFThumbnail
View/Open