Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/111309
Title: Dosimetry for radiobiological in vivo experiments at laser plasma-based proton accelerators
Author(s): Reimold, Marvin
Assenbaum, Stefan
Bernert, Constantin
Beyreuther, ElkeLook up in the Integrated Authority File of the German National Library
Brack, Florian-EmanuelLook up in the Integrated Authority File of the German National Library
Karsch, LeonhardLook up in the Integrated Authority File of the German National Library
Kraft, Stephan DavidLook up in the Integrated Authority File of the German National Library
Kroll, FlorianLook up in the Integrated Authority File of the German National Library
Nossula, Alexej
Pawelke, JörgLook up in the Integrated Authority File of the German National Library
Rehwald, MartinLook up in the Integrated Authority File of the German National Library
Schlenvoigt, Hans-PeterLook up in the Integrated Authority File of the German National Library
Schramm, UlrichLook up in the Integrated Authority File of the German National Library
Umlandt, Marvin E. P.
Zeil, KarlLook up in the Integrated Authority File of the German National Library
Ziegler, Tim
Metzkes-Ng, Josefine
Issue Date: 2023
Type: Article
Language: English
Abstract: Objective. Laser plasma-based accelerators (LPAs) of protons can contribute to research of ultra-high dose rate radiobiology as they provide pulse dose rates unprecedented at medical proton sources. Yet, LPAs pose challenges regarding precise and accurate dosimetry due to the high pulse dose rates, but also due to the sources' lower spectral stability and pulsed operation mode. For in vivo models, further challenges arise from the necessary small field dosimetry for volumetric dose distributions. For these novel source parameters and intended applications, a dosimetric standard needs to be established. Approach. In this work, we present a dosimetry and beam monitoring framework for in vivo irradiations of small target volumes with LPA protons, solving aforementioned challenges. The volumetric dose distribution in a sample (mean dose value and lateral/depth dose inhomogeneity) is provided by combining two independent dose measurements using radiochromic films (dose rate-independent) and ionization chambers (dose rate-dependent), respectively. The unique feature of the dosimetric setup is beam monitoring with a transmission time-of-flight spectrometer to quantify spectral fluctuations of the irradiating proton pulses. The resulting changes in the depth dose profile during irradiation of an in vivo sample are hence accessible and enable pulse-resolved depth dose correction for each dose measurement. Main results. A first successful small animal pilot study using an LPA proton source serves as a testcase for the presented dosimetry approach and proves its performance in a realistic setting. Significance. With several facilities worldwide either setting up or already using LPA infrastructure for radiobiological studies with protons, the importance of LPA-adapted dosimetric frameworks as presented in this work is clearly underlined.
URI: https://opendata.uni-halle.de//handle/1981185920/113263
http://dx.doi.org/10.25673/111309
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Physics in medicine and biology
Publisher: IOP Publ.
Publisher Place: Bristol
Volume: 68
Original Publication: 10.1088/1361-6560/acf025
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
Reimold_2023_Phys._Med._Biol._68_185009.pdf1.41 MBAdobe PDFThumbnail
View/Open