Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/113738
Titel: YOLO object detection models can locate and classify broad groups of flower-visiting arthropods in images
Autor(en): Stark, Thomas
Ştefan, Valentin
Wurm, Michael
Spanier, Robin
Taubenböck, HannesIn der Gemeinsamen Normdatei der DNB nachschlagen
Knight, Tiffany M.In der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2023
Art: Artikel
Sprache: Englisch
Zusammenfassung: Develoment of image recognition AI algorithms for flower-visiting arthropods has the potential to revolutionize the way we monitor pollinators. Ecologists need light-weight models that can be deployed in a field setting and can classify with high accuracy. We tested the performance of three deep learning light-weight models, YOLOv5nano, YOLOv5small, and YOLOv7tiny, at object recognition and classification in real time on eight groups of flower-visiting arthropods using open-source image data. These eight groups contained four orders of insects that are known to perform the majority of pollination services in Europe (Hymenoptera, Diptera, Coleoptera, Lepidoptera) as well as other arthropod groups that can be seen on flowers but are not typically considered pollinators (e.g., spiders-Araneae). All three models had high accuracy, ranging from 93 to 97%. Intersection over union (IoU) depended on the relative area of the bounding box, and the models performed best when a single arthropod comprised a large portion of the image and worst when multiple small arthropods were together in a single image. The model could accurately distinguish flies in the family Syrphidae from the Hymenoptera that they are known to mimic. These results reveal the capability of existing YOLO models to contribute to pollination monitoring.
URI: https://opendata.uni-halle.de//handle/1981185920/115694
http://dx.doi.org/10.25673/113738
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Scientific reports
Verlag: Macmillan Publishers Limited, part of Springer Nature
Verlagsort: [London]
Band: 13
Originalveröffentlichung: 10.1038/s41598-023-43482-3
Seitenanfang: 1
Seitenende: 11
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41598-023-43482-3.pdf2.09 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen