Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/115703
Titel: Modular Robotic Reinforcement Learning Platform for Object Manipulation
Autor(en): Kurumbaparambil, Vishnudev
Rajanayagam, Subashkumar
Twieg, StefanIn der Gemeinsamen Normdatei der DNB nachschlagen
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2024
Sprache: Englisch
Zusammenfassung: The field of robotics and autonomous systems has witnessed significant advancements in recent years, with an increasing focus on enhancing the capabilities of robotic agents through RL. This project centres around applying Reinforcement Learning techniques to do object manipulation tasks with a specific focus on making a robot arm reach a target object. Using a combination of Gazebo and Robot Operating System (ROS) environments, the robot arm is trained using custom OpenAI Gym environments to simulate the task. The primary objective involves positioning the end-effector of the robot arm close to a designated object and overcoming challenges such as self-collisions during movements. Various iterations of RL training, including different reward logics, curriculum learning approaches, and fine-tuning parameters, are explored to refine the decision-making capabilities of the agent. The training process of Curriculum Learning involves a phased approach, starting with basic movements and progressing to more complex tasks, demonstrating improved performance. However, challenges such as prolonged training times and uncertainties in arm behaviour persist. The project highlights the complexities inherent in designing effective RL strategies for robotic systems and stresses the need for further research to enhance computational efficiency and reliability in realworld applications.
URI: https://opendata.uni-halle.de//handle/1981185920/117658
http://dx.doi.org/10.25673/115703
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
4_2_ICAIIT_2024_Part_2_paper_14.pdf2.07 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen