Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/117730
Titel: Gene expression (mRNA) markers for differentiating between malignant and benign follicular thyroid tumours
Autor(en): Wojtas, BartoszIn der Gemeinsamen Normdatei der DNB nachschlagen
Pfeifer, Aleksandra
Oczko-Wojciechowska, Malgorzata
Krajewska, Jolanta
Czarniecka, Agnieszka
Kukulska, Aleksandra
Eszlinger, Markus
Musholt, Thomas J.In der Gemeinsamen Normdatei der DNB nachschlagen
Stokowy, Tomasz
Swierniak, Michal
Stobiecka, Ewa
Chmielik, Ewa
Rusinek, Dagmara
Tyszkiewicz, Tomasz
Halczok, Monik
Hauptmann, SteffenIn der Gemeinsamen Normdatei der DNB nachschlagen
Lange, Dariusz
Jarzab, Michal
Paschke, Ralf
Jarzab, Barbara
Erscheinungsdatum: 2017
Art: Artikel
Sprache: Englisch
Zusammenfassung: Distinguishing between follicular thyroid cancer (FTC) and follicular thyroid adenoma (FTA) constitutes a long-standing diagnostic problem resulting in equivocal histopathological diagnoses. There is therefore a need for additional molecular markers. To identify molecular differences between FTC and FTA, we analyzed the gene expression microarray data of 52 follicular neoplasms. We also performed a meta-analysis involving 14 studies employing high throughput methods (365 follicular neoplasms analyzed). Based on these two analyses, we selected 18 genes differentially expressed between FTA and FTC. We validated them by quantitative real-time polymerase chain reaction (qRT-PCR) in an independent set of 71 follicular neoplasms from formaldehyde-fixed paraffin embedded (FFPE) tissue material. We confirmed differential expression for 7 genes (CPQ, PLVAP, TFF3, ACVRL1, ZFYVE21, FAM189A2, and CLEC3B). Finally, we created a classifier that distinguished between FTC and FTA with an accuracy of 78%, sensitivity of 76%, and specificity of 80%, based on the expression of 4 genes (CPQ, PLVAP, TFF3, ACVRL1). In our study, we have demonstrated that meta-analysis is a valuable method for selecting possible molecular markers. Based on our results, we conclude that there might exist a plausible limit of gene classifier accuracy of approximately 80%, when follicular tumors are discriminated based on formalin-fixed postoperative material.
URI: https://opendata.uni-halle.de//handle/1981185920/119690
http://dx.doi.org/10.25673/117730
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: International journal of molecular sciences
Verlag: Molecular Diversity Preservation International
Verlagsort: Basel
Band: 18
Heft: 6
Originalveröffentlichung: 10.3390/ijms18061184
Seitenanfang: 1
Seitenende: 19
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
ijms-18-01184-v3.pdf2.37 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen