Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/118696
Title: Proteome and metabolome alterations in radish (Raphanus sativus L.) seedlings induced by inoculation with Agrobacterium tumefaciens
Author(s): Frolova, Nadezhda
Gorbach, Daria
Ihling, ChristianLook up in the Integrated Authority File of the German National Library
Bilova, Tatiana
Orlova, Anastasia
Lukasheva, Elena
Fedoseeva, Ksenia
Dodueva, Irina
Lutova, Lyudmila A.
Frolov, AndrejLook up in the Integrated Authority File of the German National Library
Issue Date: 2025
Type: Article
Language: English
Abstract: Infection of higher plants with agrobacteria (Agrobacterium tumefaciens) represents one of the most comprehensively characterized examples of plant–microbial interactions. Incorporation of the bacterial transfer DNA (T-DNA) in the plant genome results in highly efficient expression of the bacterial auxin, cytokinin and opine biosynthesis genes, as well as the host genes of hormone-mediated signaling. These transcriptional events trigger enhanced proliferation of plant cells and formation of crown gall tumors. Because of this, infection of plant tissues with A. tumefaciens provides a convenient model to address the dynamics of cell metabolism accompanying plant development. To date, both early and late plant responses to agrobacterial infection are well-characterized at the level of the transcriptome, whereas only little information on the accompanying changes in plant metabolism is available. Therefore, here we employ an integrated proteomics and metabolomics approach to address the metabolic shifts and molecular events accompanying plant responses to inoculation with the A. tumefaciens culture. Based on the acquired proteomics dataset complemented with the results of the metabolite profiling experiment, we succeeded in characterizing the metabolic shifts associated with agrobacterial infection. The observed dynamics of the seedling proteome and metabolome clearly indicated rearrangement of the energy metabolism on the 10th day after inoculation (d.a.i.). Specifically, redirection of the energy metabolism from the oxidative to the anaerobic pathway was observed. This might be a part of the plant’s adaptation response to tumor-induced hypoxic stress, which most likely involved activation of sugar signaling.
URI: https://opendata.uni-halle.de//handle/1981185920/120654
http://dx.doi.org/10.25673/118696
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Biomolecules
Publisher: MDPI
Publisher Place: Basel
Volume: 15
Issue: 2
Original Publication: 10.3390/biom15020290
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
biomolecules-15-00290.pdf4.22 MBAdobe PDFThumbnail
View/Open