Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/119225
Titel: Exploration of the Efficiency of SLM-Enabled Platforms for Everyday Tasks
Autor(en): Rusinov, Volodymyr
Basenko, Nikita
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025-04-26
Umfang: 1 Online-Ressource (6 Seiten)
Sprache: Englisch
Zusammenfassung: This study explores the potential of Small Language Models (SLMs) as an efficient and secure alternative to larger models like GPT-4 for various natural language processing (NLP) tasks. With growing concerns around data privacy and the resource-intensiveness of large models, SLMs present a promising solution for research and applications requiring fast, cost-effective, and locally deployable models. The research evaluates several SLMs across tasks such as translation, summarization, Named Entity Recognition (NER), text generation, classification, and retrieval-augmented generation (RAG), comparing their performance against larger counterparts. Models were assessed using a range of metrics specific to the intended task. Results show that smaller models perform well on complex tasks, often rivalling or even outperforming larger models like Phi-3.5. The study concludes that SLMs offer an optimal trade-off between performance and computational efficiency, particularly in environments where data security and resource constraints are critical. The findings highlight the growing viability of smaller models for a wide range of real-world applications.
URI: https://opendata.uni-halle.de//handle/1981185920/121183
http://dx.doi.org/10.25673/119225
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2-8-ICAIIT_2025_13(1).pdf902.69 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen