Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/119285| Titel: | Local coordinates on Lie groups for half-explicit time integration of Cosserat-rod models with constraints |
| Autor(en): | Tumiotto, Denise Arnold, Martin |
| Erscheinungsdatum: | 2025 |
| Art: | Artikel |
| Sprache: | Englisch |
| Zusammenfassung: | Explicit Runge-Kutta methods are the gold standard of time-integration methods for nonstiff problems in system dynamics since they combine a small numerical effort per time step with high accuracy, error control, and straightforward implementation. For the analysis of beam dynamics, we couple them with a local coordinates approach in a Lie group setting to address large rotations. Stiff shear forces and inextensibility conditions are enforced by internal constraints in a coarse-grid discretization of a geometrically exact beam model. The resulting nonstiff constrained systems are handled by a half-explicit approach that relies on the constraints at velocity level and avoids all kinds of Newton-Raphson iteration. We construct half-explicit Runge-Kutta Lie group methods of order up to five that are equipped with an adaptive step-size strategy using embedded Runge-Kutta pairs for error estimation. The methods are tested successfully for a roll-up maneuver of a flexible beam and for the classical flying-spaghetti benchmark. |
| URI: | https://opendata.uni-halle.de//handle/1981185920/121243 http://dx.doi.org/10.25673/119285 |
| Open-Access: | Open-Access-Publikation |
| Nutzungslizenz: | (CC BY 4.0) Creative Commons Namensnennung 4.0 International |
| Journal Titel: | Multibody system dynamics |
| Verlag: | Springer Science + Business Media B.V |
| Verlagsort: | Dordrecht [u.a.] |
| Band: | 63 |
| Heft: | 4 |
| Originalveröffentlichung: | 10.1007/s11044-024-10002-8 |
| Seitenanfang: | 595 |
| Seitenende: | 613 |
| Enthalten in den Sammlungen: | Open Access Publikationen der MLU |
Dateien zu dieser Ressource:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| s11044-024-10002-8.pdf | 2.74 MB | Adobe PDF | ![]() Öffnen/Anzeigen |
Open-Access-Publikation
