Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/120681
Titel: Detector response in the buildup region of small MV fields
Autor(en): Wegener, SonjaIn der Gemeinsamen Normdatei der DNB nachschlagen
Herzog, Barbara
Sauer, Otto A.
Erscheinungsdatum: 2020
Art: Artikel
Sprache: Englisch
Zusammenfassung: Purpose: The model used to calculate dose distributions in a radiotherapy treatment plan relies on the data entered during beam commissioning. The quality of these data heavily depends on the detec- tor choice made, especially in small fields and in the buildup region. Therefore, it is necessary to identify suitable detectors for measurements in the buildup region of small fields. To aid the under- standing of a detector’s limitations, several factors that influence the detector signal are to be ana- lyzed, for example, the volume effect due to the detector size, the response to electron contamination, the signal dependence on the polarity used, and the effective point of measurement chosen. Methods: We tested the suitability of different small field detectors for measurements of depth dose curves with a special focus on the surface-near area of dose buildup for fields sized between 10 9 10 and 0.6 9 0.6 cm 2 . Depth dose curves were measured with 14 different detectors including plane- parallel chambers, thimble chambers of different types and sizes, shielded and unshielded diodes as well as a diamond detector. Those curves were compared with depth dose curves acquired on Gaf- chromic film. Additionally, the magnitude of geometric volume corrections was estimated from film profiles in different depths. Furthermore, a lead foil was inserted into the beam to reduce contaminat- ing electrons and to study the resulting changes of the detector response. The role of the effective point of measurement was investigated by quantifying the changes occurring when shifting depth dose curves. Last, measurements for the small ionization chambers taken at opposing biasing voltages were compared to study polarity effects. Results: Depth-dependent correction factors for relative depth dose curves with different detectors were derived. Film, the Farmer chamber FC23, a 0.13 cm 3 scanning chamber CC13 and a plane-par- allel chamber PPC05 agree very well in fields sized 4 9 4 and 10 9 10 cm 2 . For most detectors and in smaller fields, depth dose curves differ from the film. In general, shielded diodes require larger corrections than unshielded diodes. Neither the geometric volume effect nor the electron contamina- tion can account for the detector differences. The biggest uncertainty arises from the positioning of a detector with respect to the water surface and from the choice of the detector’s effective point of mea- surement. Depth dose curves acquired with small ionization chambers differ by over 15% in the buildup region depending on sign of the biasing voltage used. Conclusions: A scanning chamber or a PPC40 chamber is suitable for fields larger than 4 9 4 cm 2 . Below that field size, the microDiamond or small ionization chambers perform best requiring the smallest corrections at depth as well as in the buildup region. Diode response changes considerably between the different types of detectors. The position of the effective point of measurement has a huge effect on the resulting curves, therefore detector specific rather than general shifts of half the inner radius of cylindrical ionization chambers for the effective point of measurement should be used. For small ionization chambers, averaging between both polarities is necessary for data obtained near the surface.
URI: https://opendata.uni-halle.de//handle/1981185920/122636
http://dx.doi.org/10.25673/120681
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Medical physics
Verlag: Wiley
Verlagsort: Hoboken, NJ
Band: 47
Heft: 3
Originalveröffentlichung: 10.1002/mp.13973
Seitenanfang: 1327
Seitenende: 1339
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Medical Physics - 2019 - Wegener - Detector response in the buildup region of small MV fields.pdf1.91 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen