Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/121304
Titel: Utilizing CNNs for classification and uncertainty quantification for 15 families of European fly pollinators
Autor(en): Stark, Thomas
Wurm, MichaelIn der Gemeinsamen Normdatei der DNB nachschlagen
Ştefan, Valentin
Wolf, Felicitas
Taubenböck, HannesIn der Gemeinsamen Normdatei der DNB nachschlagen
Knight, Tiffany M.In der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2025
Art: Artikel
Sprache: Englisch
Zusammenfassung: Pollination is essential for maintaining biodiversity and ensuring food security, and in Europe it is primarily mediated by four insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera). However, traditional monitoring methods are costly and time consuming. Although recent automation efforts have focused on butterflies and bees, flies, a diverse and ecologically important group of pollinators, have received comparatively little attention, likely due to the challenges posed by their subtle morphological differences. In this study, we investigate the application of Convolutional Neural Networks (CNNs) for classifying 15 European pollinating fly families and quantifying the associated classification uncertainty. In curating our dataset, we ensured that the images of Diptera captured diverse visual characteristics relevant for classification, including wing morphology and general body habitus. We evaluated the performance of three CNNs, ResNet18, MobileNetV3, and EfficientNetB4 and estimated the prediction confidence using Monte Carlo methods, combining test-time augmentation and dropout to approximate both aleatoric and epistemic uncertainty. We demonstrate the effectiveness of these models in accurately distinguishing fly families. We achieved an overall accuracy of up to 95.61%, with a mean relative increase in accuracy of 5.58% when comparing uncropped to cropped images. Furthermore, cropping images to the Diptera bounding boxes not only improved classification performance across all models but also increased mean prediction confidence by 8.56%, effectively reducing misclassifications among families. This approach represents a significant advance in automated pollinator monitoring and has promising implications for both scientific research and practical applications.
URI: https://opendata.uni-halle.de//handle/1981185920/123257
http://dx.doi.org/10.25673/121304
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: PLOS ONE
Verlag: PLOS
Verlagsort: San Francisco, California, US
Band: 20
Heft: 9
Originalveröffentlichung: 10.1371/journal.pone.0323984
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
journal.pone.0323984-1.pdf18.07 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen