Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/121574
Titel: 𝜎-modified Lie group generalized-𝛼 methods for constrained multibody systems
Autor(en): Holzinger, StefanieIn der Gemeinsamen Normdatei der DNB nachschlagen
Arnold, Martin
Gerstmayr, Johannes
Erscheinungsdatum: 2025
Art: Artikel
Sprache: Englisch
Zusammenfassung: Efficient and accurate time integration methods are crucial for real-time simulation, optimization and control of constrained multibody systems. This paper presents new Lie group generalized-𝛼 methods that improve accuracy for multibody systems with large rotations. The proposed methods extend the widely used geom1 scheme by Brüls and Cardona by introducing a 𝜎-modification that allows to systematically eliminate a Lie group-specific part of the leading error term without compromising second-order accuracy or zero stability. While optimal accuracy is achieved for a specific choice of 𝜎, the special case 𝜎 = 1 offers notable algorithmic simplicity and minimal computational overhead. The original geom1 scheme is recovered by setting 𝜎 = 0. Several numerical benchmarks demonstrate the potential of the proposed Lie group integrators compared to both the original geom1 method and conventional formulations based on Euler parameters or Cardan/Tait-Bryan angles.
URI: https://opendata.uni-halle.de//handle/1981185920/123526
http://dx.doi.org/10.25673/121574
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Mechanism and machine theory
Verlag: Elsevier Science
Verlagsort: Amsterdam [u.a.]
Band: 217
Originalveröffentlichung: 10.1016/j.mechmachtheory.2025.106236
Seitenanfang: 1
Seitenende: 19
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-s2.0-S0094114X25003258-main.pdf1.77 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen