Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/35094
Title: | Design, implementation and simulation of an MPC algorithm for switched nonlinear systems under combinatorial constraints |
Author(s): | Bürger, Adrian Zeile, Clemens Altmann-Dieses, Angelika Sager, Sebastian Diehl, Moritz |
Issue Date: | 2020 |
Extent: | 1 Online-Ressource (16 Seiten) |
Type: | Article |
Language: | English |
Publisher: | Elsevier, Oxford |
URN: | urn:nbn:de:gbv:ma9:1-1981185920-352978 |
Subjects: | Model predictive control Switched dynamic systems Mixed-integer nonlinear programming Approximation methods and heuristics Optimal control |
Abstract: | Within this work, we present a warm-started algorithm for Model Predictive Control (MPC) of switched nonlinear systems under combinatorial constraints based on Combinatorial Integral Approximation (CIA). To facilitate high-speed solutions, we introduce a preprocessing step for complexity reduction of CIA problems, and include this approach within a new toolbox for solution of CIA problems with special focus on MPC. The proposed algorithm is implemented and utilized within an MPC simulation study for a solar thermal climate system with nonlinear system behavior and uncertain operation conditions. The results are analyzed in terms of solution quality, constraint satisfaction and runtime of the solution steps, showing the applicability of the proposed algorithm and implementations. |
URI: | https://opendata.uni-halle.de//handle/1981185920/35297 http://dx.doi.org/10.25673/35094 |
Open Access: | Open access publication |
License: | (CC BY 4.0) Creative Commons Attribution 4.0 |
Journal Title: | Journal of process control |
Publisher: | Elsevier |
Publisher Place: | Oxford |
Volume: | 81 |
Issue: | 2020 |
Original Publication: | 10.1016/j.jprocont.2019.05.016 |
Page Start: | 15 |
Page End: | 30 |
Appears in Collections: | Fakultät für Mathematik (OA) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Sager_et al._J. of Process Control_2020.pdf | Zweitveröffentlichung | 3.42 MB | Adobe PDF | View/Open |