Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/35094
Title: Design, implementation and simulation of an MPC algorithm for switched nonlinear systems under combinatorial constraints
Author(s): Bürger, Adrian
Zeile, Clemens
Altmann-Dieses, Angelika
Sager, SebastianLook up in the Integrated Authority File of the German National Library
Diehl, Moritz
Issue Date: 2020
Extent: 1 Online-Ressource (16 Seiten)
Type: Article
Language: English
Publisher: Elsevier, Oxford
URN: urn:nbn:de:gbv:ma9:1-1981185920-352978
Subjects: Model predictive control
Switched dynamic systems
Mixed-integer nonlinear programming
Approximation methods and heuristics
Optimal control
Abstract: Within this work, we present a warm-started algorithm for Model Predictive Control (MPC) of switched nonlinear systems under combinatorial constraints based on Combinatorial Integral Approximation (CIA). To facilitate high-speed solutions, we introduce a preprocessing step for complexity reduction of CIA problems, and include this approach within a new toolbox for solution of CIA problems with special focus on MPC. The proposed algorithm is implemented and utilized within an MPC simulation study for a solar thermal climate system with nonlinear system behavior and uncertain operation conditions. The results are analyzed in terms of solution quality, constraint satisfaction and runtime of the solution steps, showing the applicability of the proposed algorithm and implementations.
URI: https://opendata.uni-halle.de//handle/1981185920/35297
http://dx.doi.org/10.25673/35094
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Journal of process control
Publisher: Elsevier
Publisher Place: Oxford
Volume: 81
Issue: 2020
Original Publication: 10.1016/j.jprocont.2019.05.016
Page Start: 15
Page End: 30
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Sager_et al._J. of Process Control_2020.pdfZweitveröffentlichung3.42 MBAdobe PDFThumbnail
View/Open