Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/37730
Title: | Goethite-bound phosphorus in an acidic subsoil is not available to beech (Fagus sylvatica L.) |
Author(s): | Klotzbücher, Anika Schunck, Florian Klotzbücher, Thimo Kaiser, Klaus Glaser, Bruno Spohn, Marie Widdig, Meike Mikutta, Robert |
Issue Date: | 2020 |
Type: | Article |
Language: | English |
Abstract: | In forests, where the supply of bioavailable phosphorus (P) from easily weatherable primary minerals is small, plants are thought to recycle P efficiently by uptake of P released from decomposing forest floor material. Yet a share of the P is leached into the subsoil, where it is strongly adsorbed onto the reactive surfaces of pedogenic Fe and Al oxides. This raises the question of whether P leached into subsoil is also recycled. To investigate the mobilization of P bound to hydrous Fe oxides, we conducted a mesocosm experiment in a greenhouse. Beech saplings were grown for 14 months in subsoil material (Bw horizon from the P-poor Lüss beech forest) with added goethite-P adsorption complexes, in either inorganic (orthophosphate) or organic (phytate) form. Four types of control mesocosms were run: soil only and soil mixed with either dissolved orthophosphate or dissolved phytate or goethite. At the end of the experiment, neither total P mass in trees nor P contents in leaves differed between the treatments. According to leaf nutrient contents, plant growth was strongly limited by P in all treatments. Yet total P mass in trees did not increase over the course of the experiment. Thus, despite its P demand, beech was not able to acquire P from goethite surfaces within two vegetation periods. Also P added in dissolved form to the soil before transplanting as well as native soil P were not available. This suggests that, once inorganic and organic P is bound to pedogenic metal oxides in mineral soil, it is not or hardly recycled, which can be an explanation for field data demonstrating quantitatively significant stocks of P in the subsoil of P-deficient forests. |
URI: | https://opendata.uni-halle.de//handle/1981185920/37973 http://dx.doi.org/10.25673/37730 |
Open Access: | Open access publication |
License: | (CC BY 4.0) Creative Commons Attribution 4.0 |
Sponsor/Funder: | Publikationsfond MLU |
Journal Title: | Frontiers in forests and global change |
Publisher: | Frontiers Media |
Publisher Place: | Lausanne |
Volume: | 3 |
Issue: | 94 |
Original Publication: | 10.3389/ffgc.2020.00094 |
Appears in Collections: | Open Access Publikationen der MLU |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ffgc-03-00094.pdf | 2.3 MB | Adobe PDF | View/Open |