Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/849
Title: Auswertung von Zähldaten mit wiederholten Beobachtungen pro Objekt - dargestellt an Beispielen aus dem landwirtschaftlichen Versuchswesen
Author(s): Thamm, Katrin
Referee(s): Spilke, J., Prof. Dr.
Swalve, H. H., Prof. Dr.
Reinsch, N., Prof. Dr.
Granting Institution: Martin-Luther-Universität Halle-Wittenberg
Issue Date: 2012
Extent: Online-Ressource (118 Bl. = 0,76 mb)
Type: Hochschulschrift
Type: PhDThesis
Exam Date: 2012-10-15
Language: German
Publisher: Universitäts- und Landesbibliothek Sachsen-Anhalt
URN: urn:nbn:de:gbv:3:4-9403
Subjects: Agrarforschung
Feldversuch
Modellierung
Online-Publikation
Hochschulschrift
Abstract: Die Analyse von Zähldaten spielt im landwirtschaftlichen Versuchswesen eine wichtige Rolle. Bei wiederholten Beobachtungen pro Objekt müssen die Korrelationen zwischen den Beobachtungen bei der Auswertung beachtet werden. Im generalisierten linearen Modell berücksichtigen marginale oder subjektspezifische Modellansätze die Korrelationen unterschiedlich. Der Versuchsplan und die geschätzten Modellparameter zweier Praxisversuche wurden zur Simulation von Zähldaten genutzt, wobei beide Modellansätze einbezogen wurden. Als Schätzverfahren für die Modellparameter dienten die Maximum-Likelihood Methode, die Pseudo-Likelihood Methode und die generalized estimating equations. Die Modelle und Verfahren wurden mittels des Konvergenzverhaltens, des Bias und der Einhaltung des nominalen Fehlers 1. Art für die Hypothesenprüfung verglichen. In Abhängigkeit der vorgegebenen Modellparameter zeigten der subjektspezifische Modellansatz und die Maximum-Likelihood Methode die besten Resultate.
The analysis of count data is important in agricultural science. If more than one observation per object exists then correlations of the observations must be taken into account. The correlations are considered differently by marginal or subject-specific models within the generalized linear model. The experimental design and the estimated model parameters based on two trials were used to simulate count data. Marginal as well as subject-specific models were included. The estimation methods for the model parameters were maximum likelihood, pseudo-likelihood, and generalized estimating equations. The models and estimation methods were evaluated by convergence properties, Bias, and realizing the nominal type one error of the statistical hypothesis testing. In comparison, the subject-specific models and maximum likelihood showed the best results depending on the predetermined parameters.
URI: https://opendata.uni-halle.de//handle/1981185920/7748
http://dx.doi.org/10.25673/849
Open Access: Open access publication
License: In CopyrightIn Copyright
Appears in Collections:Landwirtschaft und verwandte Bereiche

Files in This Item:
File Description SizeFormat 
Pflichtexemplar_Thamm.pdf781.45 kBAdobe PDFThumbnail
View/Open