Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/77128
Title: Inelastic behavior of polyoxymethylene for wide strain rate and temperature ranges : constitutive modeling and identification
Author(s): Filanova, Yevgeniya
Hauptmann, Johannes
Längler, Frank
Naumenko, KonstantinLook up in the Integrated Authority File of the German National Library
Issue Date: 2021
Type: Article
Language: English
URN: urn:nbn:de:gbv:ma9:1-1981185920-790827
Subjects: Polyoxymethylene
Rate-dependent inelasticity
Composite model
Inelastic dilatation
Abstract: The aim of this paper is to present experimental data and the constitutive model for the inelastic behavior of polyoxymethylene in wide strain rate and temperature ranges. To capture the non-linearity of the stress responses for both loading and unloading regimes, the composite model of inelastic deformation is utilized and further developed. The equivalent inelastic strain rate is described by the Prandtl–Eyring law, while the temperature dependence is characterized by the modified Arrhenius-type law. Generalized equivalent stress and the flow rule are formulated to capture pressure sensitivity, transverse strain and volumetric strain responses. The results obtained by the constitutive law are compared with experimental data for stress vs. axial strain from standard tension tests as well as with axial and transverse strains measured by digital image correlation. The developed composite model is able to capture the non-linearity of stress–strain curves for complex loading paths within the small strain regime. For higher strains, apart from geometrically non-linear theory, evolution laws for the volume fraction of the constituents should be modified and calibrated. For the small strain regime, the inelastic dilatation is negligible. For higher axial strain values, a decrease in Poisson’s ratio under tension and increase in it under compression are observed. The Drucker–Prager-type equivalent stress and the developed flow rule provide a better description of both the transverse and volumetric strains than that of the classical von Mises–Odqvist flow rules.
URI: https://opendata.uni-halle.de//handle/1981185920/79082
http://dx.doi.org/10.25673/77128
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Sponsor/Funder: OVGU-Publikationsfonds 2021
Journal Title: Materials
Publisher: MDPI
Publisher Place: Basel
Volume: 14
Issue: 13
Original Publication: 10.3390/ma14133667
Page Start: 1
Page End: 17
Appears in Collections:Fakultät für Maschinenbau (OA)

Files in This Item:
File Description SizeFormat 
Filanova et al._Inelastic behavior_2021.pdfZweitveröffentlichung1.05 MBAdobe PDFThumbnail
View/Open