Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/79520
Titel: | Robust hand gesture recognition using multiple shape-oriented visual cues |
Autor(en): | Bakheet, Samy Hamadi, Ayoub |
Erscheinungsdatum: | 2021 |
Art: | Artikel |
Sprache: | Englisch |
URN: | urn:nbn:de:gbv:ma9:1-1981185920-814741 |
Schlagwörter: | Hand gesture recognition Shape oriented features Fourier descriptor Moments invariants SVM |
Zusammenfassung: | Robust vision-based hand pose estimation is highly sought but still remains a challenging task, due to its inherent difficulty partially caused by self-occlusion among hand fingers. In this paper, an innovative framework for real-time static hand gesture recognition is introduced, based on an optimized shape representation build from multiple shape cues. The framework incorporates a specific module for hand pose estimation based on depth map data, where the hand silhouette is first extracted from the extremely detailed and accurate depth map captured by a time-of-flight (ToF) depth sensor. A hybrid multi-modal descriptor that integrates multiple affine-invariant boundary-based and region-based features is created from the hand silhouette to obtain a reliable and representative description of individual gestures. Finally, an ensemble of one-vs.-all support vector machines (SVMs) is independently trained on each of these learned feature representations to perform gesture classification. When evaluated on a publicly available dataset incorporating a relatively large and diverse collection of egocentric hand gestures, the approach yields encouraging results that agree very favorably with those reported in the literature, while maintaining real-time operation. |
URI: | https://opendata.uni-halle.de//handle/1981185920/81474 http://dx.doi.org/10.25673/79520 |
Open-Access: | Open-Access-Publikation |
Nutzungslizenz: | (CC BY 4.0) Creative Commons Namensnennung 4.0 International |
Sponsor/Geldgeber: | OVGU-Publikationsfonds 2021 |
Journal Titel: | EURASIP journal on image and video processing |
Verlag: | Hindawi Publishing Corp. |
Verlagsort: | New York, NY |
Band: | 2021 |
Heft: | 2021 |
Originalveröffentlichung: | 10.1186/s13640-021-00567-1 |
Seitenanfang: | 1 |
Seitenende: | 18 |
Enthalten in den Sammlungen: | Fakultät für Elektrotechnik und Informationstechnik (OA) |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Bakheet et al._Robust_2021.pdf | Zweitveröffentlichung | 1.26 MB | Adobe PDF | Öffnen/Anzeigen |