Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/85850
Title: A dataset of 175k stable and metastable materials calculated with the PBEsol and SCAN functionals
Author(s): Schmidt, Jonathan
Wang, Hai-Chen
Cerqueira, Tiago F. T.
Botti, Silvana
Marques, Miguel A. L.
Issue Date: 2022
Type: Article
Language: English
Abstract: In the past decade we have witnessed the appearance of large databases of calculated material properties. These are most often obtained with the Perdew-Burke-Ernzerhof (PBE) functional of density-functional theory, a well established and reliable technique that is by now the standard in materials science. However, there have been recent theoretical developments that allow for increased accuracy in the calculations. Here, we present a dataset of calculations for 175k crystalline materials obtained with two functionals: geometry optimizations are performed with PBE for solids (PBEsol) that yields consistently better geometries than the PBE functional, and energies are obtained from PBEsol and from SCAN single-point calculations at the PBEsol geometry. Our results provide an accurate overview of the landscape of stable (and nearly stable) materials, and as such can be used for reliable predictions of novel compounds. They can also be used for training machine learning models, or even for the comparison and benchmark of PBE, PBEsol, and SCAN.
URI: https://opendata.uni-halle.de//handle/1981185920/87802
http://dx.doi.org/10.25673/85850
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Sponsor/Funder: Publikationsfonds MLU
Journal Title: Scientific data
Publisher: Nature Publ. Group
Publisher Place: London
Volume: 9
Original Publication: 10.1038/s41597-022-01177-w
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s41597-022-01177-w.pdf1.85 MBAdobe PDFThumbnail
View/Open