Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/2236
Title: | Equilibrium partitioning of ionic organic chemicals in phospholipid membranes - experiments and model predictions ; [kumulative Dissertation] |
Author(s): | Bittermann, Kai |
Referee(s): | Goss, Kai-Uwe Fenner, Kathrin |
Granting Institution: | Martin-Luther-Universität Halle-Wittenberg |
Issue Date: | 2017 |
Extent: | 1 Online-Ressource (223 Seiten) |
Type: | Hochschulschrift |
Type: | PhDThesis |
Exam Date: | 2017-12-05 |
Language: | English |
Publisher: | Universitäts- und Landesbibliothek Sachsen-Anhalt |
URN: | urn:nbn:de:gbv:3:4-22510 |
Abstract: | Die vorliegende Arbeit konzentrierte sich auf die Beschreibung der Verteilung von organischen Ionen zwischen Phospholipid-Membranen und Wasser (Klipw), eines entscheidenden Deskriptors umweltrelevanter Eigenschaften wie Bioakkumulation und nichtspezifische Toxizität. Um das COSMOmic (d.h., COSMO-RS für Mizellen) Modell auch für ionische Chemikalien nutzbar zu machen, wurde ein internes Membrandipolpotential implementiert. Diese Weiterentwicklung hat keine negativen Effekte auf die Vorhersagegenauigkeit für neutrale Chemikalien (RMSE = 0.62 log Einheiten), verbessert die Vorhersage für Ionen jedoch deutlich (RMSE = 0.70 log Einheiten). Sowohl in Anwendungsbereich als auch Vorhersagegüte ist COSMOmic empirischen Korrelationen mit Kow-Werten sowie pp-LFER Modellen überlegen. Schließlich wurden mit COSMOmic berechnete Klipw Werte genutzt, um das Konzept der Basistoxizität zu untersuchen. Die in dieser Arbeit präsentierten Verbesserungen von COSMOmic könnten in Zukunft dabei behilflich sein, jenseits von Toxizität auch das Bioakkumulationsvermögen ionischer Chemikalien weitergehend zu verstehen. This work focused on describing of the partition coefficient of organic ions between phospholipid membranes and water (Klipw), which is a crucial descriptor for environmentally relevant properties such as bioaccumulation and non-specific toxicity. The internal membrane dipole potential was implemented in the COSMOmic model (i.e., COSMO-RS for micelles) in order to make it applicable for ionic chemicals. This model refinement had no negative effect on the prediction accuracy of neutral chemicals (RMSE = 0.62 log units), while it highly improved the prediction of ions (RMSE = 0.70 log units). Furthermore, it prooved to be more reliable and mechanistically sound than both empirical correlations with Kow as well as a pp-LFER model. Finally, the baseline toxicity concept was validated for ions using COSMOmic-predicted Klipw values. The herein presented improvement of COSMOmic might help in future to not only further investigate the toxicity of charged chemicals but also their bioaccumulation potential. |
URI: | https://opendata.uni-halle.de//handle/1981185920/9008 http://dx.doi.org/10.25673/2236 |
Open Access: | Open access publication |
License: | In Copyright |
Appears in Collections: | Chemie und zugeordnete Wissenschaften |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dissertation_Kai_Bittermann_mit_Gutachtern.pdf | 6.02 MB | Adobe PDF | View/Open |