Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/92708
Titel: Scalarization functionals in mathematical finance and vector optimization : a new view on acceptance sets and risk measures
Autor(en): Marohn, MarcelIn der Gemeinsamen Normdatei der DNB nachschlagen
Gutachter: Tammer, ChristianeIn der Gemeinsamen Normdatei der DNB nachschlagen
Allende, Gemayqzel Bouza
Körperschaft: Martin-Luther-Universität Halle-Wittenberg
Erscheinungsdatum: 2022
Umfang: 1 Online-Ressource (184 Seiten)
Typ: HochschulschriftIn der Gemeinsamen Normdatei der DNB nachschlagen
Art: Dissertation
Tag der Verteidigung: 2022-10-21
Sprache: Englisch
URN: urn:nbn:de:gbv:3:4-1981185920-946642
Zusammenfassung: Risikomaße und Akzeptanzmengen sind wichtige Untersuchungsobjekte, die auf der von Artzner et al. 1999 eingeführten Axiomatik beruhen. Im aktuellen Umfeld steigender regulatorischer Anforderungen an Finanzinstitute hinsichtlich ihrer Kapital- und Risikopositionen sind optimale Finanzentscheidungen wesentlich. Diese Dissertation leistet einen wichtigen Beitrag zur Bestimmung kostenminimaler Investitionsentscheidungen zur Erfüllung solcher regulatorischen Vorgaben. Im Mittelpunkt steht dabei die Untersuchung der Eigenschaften des zugehörigen Risikofunktionals, die daraufhin wesentlich für die Bestimmung kostenminimaler Lösungen des Vektoroptimierungsproblems sind. Ferner werden die (schwach) effizienten Punkte der Akzeptanzmenge bestimmt und Zusammenhänge zur Löosung des beschriebenen Optimierungsproblems abgeleitet. Mittels eines besonders allgemeinen Finanzmarktmodells wird eine weitreichende Anwendbarkeit in Theorie und Praxis gewährleistet.
Risk measures and acceptance sets are important subjects in research, which are based on the axiomatic framework introduced by Artzner et al. in 1999. In the current environment of increasing regulatory demands on financial institutions with respect to their capital and risk positions, optimal financial decisions are crucial. This thesis makes an important contribution to the determination of cost-minimal investment decisions for fulfilling regulatory restrictions. The focus lies on the analysis of properties of the corresponding risk measure for deriving cost-minimal solutions of the institutional vector optimization problem afterwards. Moreover, we characterize (weakly) efficient points of the acceptance set and derive relationships to the solutions of the mentioned optimization problem. By assumption of a very general financial market model, we reach wide applicability in theory and practice.
URI: https://opendata.uni-halle.de//handle/1981185920/94664
http://dx.doi.org/10.25673/92708
Open-Access: Open-Access-Publikation
Nutzungslizenz: In CopyrightIn Copyright
Enthalten in den Sammlungen:Interne-Einreichungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Dissertation_MLU_2022_MarohnMarcel.pdf1.15 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen