Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/101316
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFreise, Fritjof-
dc.contributor.authorGaffke, Norbert-
dc.contributor.authorSchwabe, Rainer-
dc.date.accessioned2023-03-07T13:11:03Z-
dc.date.available2023-03-07T13:11:03Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/103271-
dc.identifier.urihttp://dx.doi.org/10.25673/101316-
dc.description.abstractThe paper continues the authors’ work (Freise et al. The adaptive Wynn-algorithm in generalized linear models with univariate response. arXiv:1907.02708, 2019) on the adaptive Wynn algorithm in a nonlinear regression model. In the present paper the asymptotics of adaptive least squares estimators under the adaptive Wynn algorithm is studied. Strong consistency and asymptotic normality are derived for two classes of nonlinear models: firstly, for the class of models satisfying a condition of ‘saturated identifiability’, which was introduced by Pronzato (Metrika 71:219–238, 2010); secondly, a class of generalized linear models. Further essential assumptions are compactness of the experimental region and of the parameter space together with some natural continuity assumptions. For asymptotic normality some further smoothness assumptions and asymptotic homoscedasticity of random errors are needed and the true parameter point is required to be an interior point of the parameter space.eng
dc.description.sponsorshipProjekt DEAL 2021-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/184-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectApproximate designeng
dc.subjectD-optimalityeng
dc.subjectAdaptive estimationeng
dc.subjectStrong consistencyeng
dc.subjectAsymptotic normalityeng
dc.subjectGeneralized linear modeleng
dc.subject.ddc510.72-
dc.titleConvergence of least squares estimators in the adaptive Wynn algorithm for some classes of nonlinear regression modelseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-1032713-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleMetrika-
local.bibliographicCitation.volume84-
local.bibliographicCitation.pagestart851-
local.bibliographicCitation.pageend874-
local.bibliographicCitation.publishernameSpringer-
local.bibliographicCitation.publisherplaceBerlin-
local.bibliographicCitation.doi10.1007/s00184-020-00803-0-
local.openaccesstrue-
dc.identifier.ppn1767738676-
local.bibliographicCitation.year2021-
cbs.sru.importDate2023-03-07T13:07:32Z-
local.bibliographicCitationEnthalten in Metrika - Berlin : Springer, 1958-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Freise et al._Convergence_2021.pdfZweitveröffentlichung525.15 kBAdobe PDFThumbnail
View/Open