Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/103458
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWilke, Mathias-
dc.date.accessioned2023-06-07T08:57:01Z-
dc.date.available2023-06-07T08:57:01Z-
dc.date.issued2023-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/105410-
dc.identifier.urihttp://dx.doi.org/10.25673/103458-
dc.description.abstractWe investigate a quasilinear system consisting of the Westervelt equation from nonlinear acoustics and Pennes bioheat equation, subject to Dirichlet or Neumann boundary conditions. The concept of maximal regularity of type Lp–Lq is applied to prove local and global well-posedness. Moreover, we show by a parameter trick that the solutions regularize instantaneously. Finally, we compute the equilibria of the system and investigate the long-time behaviour of solutions starting close to equilibria.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc510-
dc.titleLp–Lq-theory for a quasilinear non-isothermal Westervelt equationeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleApplied mathematics & optimization-
local.bibliographicCitation.volume88-
local.bibliographicCitation.issue1-
local.bibliographicCitation.publishernameSpringer-
local.bibliographicCitation.publisherplaceNew York, NY-
local.bibliographicCitation.doi10.1007/s00245-023-09987-z-
local.subject.keywordsNon-isothermal Westervelt equation, optimal regularity, quasilinear parabolic system, exponential stability-
local.openaccesstrue-
dc.identifier.ppn1842047590-
local.bibliographicCitation.year2023-
cbs.sru.importDate2023-06-07T08:56:35Z-
local.bibliographicCitationEnthalten in Applied mathematics & optimization - New York, NY : Springer, 1974-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s00245-023-09987-z.pdf381.42 kBAdobe PDFThumbnail
View/Open