Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/113165
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDamm, Tobias-
dc.contributor.authorRedmann, Martin-
dc.date.accessioned2024-01-17T08:34:39Z-
dc.date.available2024-01-17T08:34:39Z-
dc.date.issued2023-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/115120-
dc.identifier.urihttp://dx.doi.org/10.25673/113165-
dc.description.abstractIn this paper, we consider a model reduction technique for stabilizable and detectable stochastic systems. It is based on a pair of Gramians that we analyze in terms of well-posedness. Subsequently, dominant subspaces of the stochastic systems are identified exploiting these Gramians. An associated balancing related scheme is proposed that removes unimportant information from the stochastic dynamics in order to obtain a reduced system. We show that this reduced model preserves important features like stabilizability and detectability. Additionally, a comprehensive error analysis based on eigenvalues of the Gramian pair product is conducted. This provides an a-priori criterion for the reduction quality which we illustrate in numerical experiments.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subject.ddc510-
dc.titleComplexity reduction of large-scale stochastic systems using linear quadratic Gaussian balancingeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of the Franklin Institute-
local.bibliographicCitation.volume360-
local.bibliographicCitation.pagestart14534-
local.bibliographicCitation.pageend14552-
local.bibliographicCitation.publishernameElsevier Science-
local.bibliographicCitation.publisherplaceAmsterdam [u.a.]-
local.bibliographicCitation.doi10.1016/j.jfranklin.2023.11.018-
local.openaccesstrue-
dc.identifier.ppn1878304518-
cbs.publication.displayform2023-
local.bibliographicCitation.year2023-
cbs.sru.importDate2024-01-17T08:34:18Z-
local.bibliographicCitationEnthalten in Journal of the Franklin Institute - Amsterdam [u.a.] : Elsevier Science, 1829-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
1-s2.0-S0016003223007305-main.pdf854.95 kBAdobe PDFThumbnail
View/Open