Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/113165Langanzeige der Metadaten
| DC Element | Wert | Sprache |
|---|---|---|
| dc.contributor.author | Damm, Tobias | - |
| dc.contributor.author | Redmann, Martin | - |
| dc.date.accessioned | 2024-01-17T08:34:39Z | - |
| dc.date.available | 2024-01-17T08:34:39Z | - |
| dc.date.issued | 2023 | - |
| dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/115120 | - |
| dc.identifier.uri | http://dx.doi.org/10.25673/113165 | - |
| dc.description.abstract | In this paper, we consider a model reduction technique for stabilizable and detectable stochastic systems. It is based on a pair of Gramians that we analyze in terms of well-posedness. Subsequently, dominant subspaces of the stochastic systems are identified exploiting these Gramians. An associated balancing related scheme is proposed that removes unimportant information from the stochastic dynamics in order to obtain a reduced system. We show that this reduced model preserves important features like stabilizability and detectability. Additionally, a comprehensive error analysis based on eigenvalues of the Gramian pair product is conducted. This provides an a-priori criterion for the reduction quality which we illustrate in numerical experiments. | eng |
| dc.language.iso | eng | - |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
| dc.subject.ddc | 510 | - |
| dc.title | Complexity reduction of large-scale stochastic systems using linear quadratic Gaussian balancing | eng |
| dc.type | Article | - |
| local.versionType | publishedVersion | - |
| local.bibliographicCitation.journaltitle | Journal of the Franklin Institute | - |
| local.bibliographicCitation.volume | 360 | - |
| local.bibliographicCitation.pagestart | 14534 | - |
| local.bibliographicCitation.pageend | 14552 | - |
| local.bibliographicCitation.publishername | Elsevier Science | - |
| local.bibliographicCitation.publisherplace | Amsterdam [u.a.] | - |
| local.bibliographicCitation.doi | 10.1016/j.jfranklin.2023.11.018 | - |
| local.openaccess | true | - |
| dc.identifier.ppn | 1878304518 | - |
| cbs.publication.displayform | 2023 | - |
| local.bibliographicCitation.year | 2023 | - |
| cbs.sru.importDate | 2024-01-17T08:34:18Z | - |
| local.bibliographicCitation | Enthalten in Journal of the Franklin Institute - Amsterdam [u.a.] : Elsevier Science, 1829 | - |
| local.accessrights.dnb | free | - |
| Enthalten in den Sammlungen: | Open Access Publikationen der MLU | |
Dateien zu dieser Ressource:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| 1-s2.0-S0016003223007305-main.pdf | 854.95 kB | Adobe PDF | ![]() Öffnen/Anzeigen |
