Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/115088
Titel: | Digital twins : dynamic model-data fusion for ecology |
Autor(en): | De Koning, Koen Broekhuijsen, Jeroen Kühn, Ingolf Ovaskainen, Otso Taubert, Franziska Endresen, Dag Schigel, Dmitry Grimm, Volker |
Erscheinungsdatum: | 2023 |
Art: | Artikel |
Sprache: | Englisch |
Zusammenfassung: | Digital twins (DTs) are an emerging phenomenon in the public and private sectors as a new tool to monitor and understand systems and processes. DTs have the potential to change the status quo in ecology as part of its digital transformation. However, it is important to avoid misguided developments by managing expectations about DTs. We stress that DTs are not just big models of everything, containing big data and machine learning. Rather, the strength of DTs is in combining data, models, and domain knowledge, and their continuous alignment with the real world. We suggest that researchers and stakeholders exercise caution in DT development, keeping in mind that many of the strengths and challenges of computational modelling in ecology also apply to DTs. |
URI: | https://opendata.uni-halle.de//handle/1981185920/117044 http://dx.doi.org/10.25673/115088 |
Open-Access: | Open-Access-Publikation |
Nutzungslizenz: | (CC BY 4.0) Creative Commons Namensnennung 4.0 International |
Journal Titel: | Trends in ecology and evolution |
Verlag: | Elsevier |
Verlagsort: | Amsterdam [u.a.] |
Band: | 38 |
Heft: | 10 |
Originalveröffentlichung: | 10.1016/j.tree.2023.04.010 |
Seitenanfang: | 916 |
Seitenende: | 926 |
Enthalten in den Sammlungen: | Open Access Publikationen der MLU |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
1-s2.0-S0169534723000903-main.pdf | 3.51 MB | Adobe PDF | Öffnen/Anzeigen |