Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/115332
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCao, Yu-
dc.contributor.authorScholte, Alexander-
dc.contributor.authorPrehm, Marko-
dc.contributor.authorAnders, Christian-
dc.contributor.authorChen, Changlong-
dc.contributor.authorSong, Jiangxuan-
dc.contributor.authorZhang, Lei-
dc.contributor.authorHe, Gang-
dc.contributor.authorTschierske, Carsten-
dc.contributor.authorLiu, Feng-
dc.date.accessioned2024-03-15T08:30:33Z-
dc.date.available2024-03-15T08:30:33Z-
dc.date.issued2024-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/117286-
dc.identifier.urihttp://dx.doi.org/10.25673/115332-
dc.description.abstractQuasiperiodic patterns and crystals—having long range order without translational symmetry—have fascinated researchers since their discovery. In this study, we report on new p-terphenyl-based T-shaped facial polyphiles with two alkyl end chains and a glycerol-based hydrogen-bonded side group that self-assemble into an aperiodic columnar liquid quasicrystal with 12-fold symmetry and its periodic liquid-crystalline approximants with complex superstructures. All represent honeycombs formed by the self-assembly of the p-terphenyls, dividing space into prismatic cells with polygonal cross-sections. In the perspective of tiling patterns, the presence of unique trapezoidal tiles, consisting of three rigid sides formed by the p-terphenyls and one shorter, incommensurate, and adjustable side by the alkyl end chains, plays a crucial role for these phases. A delicate temperature-dependent balance between conformational, entropic and space-filling effects determines the role of the alkyl chains, either as network nodes or trapezoid walls, thus resulting in the order-disorder transitions associated with emergence of quasiperiodicity. In-depth analysis suggests a change from a quasiperiodic tiling involving trapezoids to a modified one with a contribution of trapezoid pair fusion. This work paves the way for understanding quasiperiodicity emergence and develops fundamental concepts for its generation by chemical design of non-spherical molecules, aggregates, and frameworks based on dynamic reticular chemistry.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/-
dc.subject.ddc540-
dc.titleUnderstanding the role of trapezoids in honeycomb self-assembly : pathways between a columnar liquid quasicrystal and its liquid-crystalline approximantseng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleAngewandte Chemie. International edition-
local.bibliographicCitation.volume63-
local.bibliographicCitation.issue6-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend12-
local.bibliographicCitation.publishernameWiley-VCH-
local.bibliographicCitation.publisherplaceWeinheim-
local.bibliographicCitation.doi10.1002/anie.202314454-
local.openaccesstrue-
dc.identifier.ppn1883463807-
cbs.publication.displayform2024-
local.bibliographicCitation.year2024-
cbs.sru.importDate2024-03-15T08:29:46Z-
local.bibliographicCitationEnthalten in Angewandte Chemie. International edition - Weinheim : Wiley-VCH, 1998-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU