Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/115645
Titel: Computational Breakthroughs in Aquatic Taxonomy : The Role of Deep Learning and DNA Barcoding
Autor(en): Kasianchuk, Nadiia
Harkava, Sofiia
Onishchenko, Sofiia
Solodka, Olesia
Shyshko, Daria
Siemens, EduardIn der Gemeinsamen Normdatei der DNB nachschlagen
Falfushynska, Halina
Ustyianovych, Taras
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2024
Sprache: Englisch
Schlagwörter: Informationstechnik
Datenverarbeitung
Zusammenfassung: Aquatic ecosystems are crucial in maintaining environmental equilibrium and sustaining human well-being. However, the traditional manual methods used in hydrobiological research have limitations in providing a far-reaching understanding of these intricate ecosystems. Data science, machine learning, and deep learning techniques offer a variety of opportunities to overcome these limitations and unlock new insights into aquatic environments. This study highlights the impact of computational tools in areas such as taxonomic identification, metagenomic sequence analysis, and water quality prediction. Deep learning techniques have demonstrated superior accuracy in classifying organisms, including those previously unidentified by conventional methods. In metagenomic sequence analysis, machine learning aids in effectively ssembling DNA sequences, aligning them with known databases, and addressing challenges related to sequence repeats, errors, and missing data. Furthermore, predictive models have been developed to provide insights into water quality parameters, such as eutrophication events and heavy metal concentrations. These advancements lead to informed conservation measures and a deep understanding of the intricate relationships within aquatic ecosystems. However, challenges persist, including data quality issues, model interpretability, and the need for robust training datasets. Thus, data integration strategies designed specifically for environmental and genomic studies are necessary. Data fusion and imputation can help address data scarcity and provide a comprehensive view of hydrobiological processes. As the study of aquatic ecosystems continues to evolve, the synergy between computational methods and traditional hydrobiological techniques holds immense potential. By everaging the power of data science and cutting-edge technologies, researchers can gain a deep understanding of aquatic environments, monitor changes in biodiversity, and develop informed strategies for sustainable management amidst global environmental shifts.
URI: https://opendata.uni-halle.de//handle/1981185920/117600
http://dx.doi.org/10.25673/115645
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2_3_ICAIIT_2024_Part_4_paper_11.pdf781.22 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen