Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/115666
Titel: Multicrystalline, highly oriented thick-film silicon from reduction of soda-lime glass
Autor(en): Schall, Ingrid
Ebbinghaus, StefanIn der Gemeinsamen Normdatei der DNB nachschlagen
Strelow, ChristianIn der Gemeinsamen Normdatei der DNB nachschlagen
Peiner, ErwinIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2023
Art: Artikel
Sprache: Englisch
Zusammenfassung: The study describes synthesis and characterization of > 10 µm thick multicrystalline (mc), highly oriented, p-doped silicon layers by aluminothermic reduction of low-cost soda-lime glass. X-ray diffraction shows a highly preferred (111)-orientation and excellent crystallinity. Low compressive stress and very good crystallinity are confirmed by the peak position and width of the Raman LO-phonon line, approaching the one of bulk single-crystalline wafer material. Due to strong bonding to the glass substrate layer, spalling is not observed. A conductive aluminum-rich oxide layer is formed underneath the silicon, serving as an electrical back-contact for electronic devices. Using secondary ion mass spectrometry very low concentrations of 1014–1015 cm−3 of impurities are found originating from the soda-lime glass with an iron content below the detection limit. Furthermore, a plateau-like, very homogenous Al concentration of ≈4 × 1018 cm−3 over a thickness of ≈10 µm is found, which corresponds to the solubility of Al in Si at the process temperature. Complete electronic activation within the plateau region is confirmed by carrier concentration measurements using electrochemical capacitance–voltage profiling and Raman spectroscopy. Hole concentrations in the range of few 1018 cm−3 are beneficial for the p-type base material of full-emitter cell mc-silicon photovoltaic devices.
URI: https://opendata.uni-halle.de//handle/1981185920/117621
http://dx.doi.org/10.25673/115666
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Advanced materials interfaces
Verlag: Wiley-VCH
Verlagsort: Weinheim
Band: 10
Heft: 35
Originalveröffentlichung: 10.1002/admi.202300681
Seitenanfang: 1
Seitenende: 9
Enthalten in den Sammlungen:Open Access Publikationen der MLU