Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/117452
Titel: Proof-of-concept study of a small language model chatbot for breast cancer decision support - a transparent, source-controlled, explainable and data-secure approach
Autor(en): Griewing, SebastianIn der Gemeinsamen Normdatei der DNB nachschlagen
Lechner, Fabian
Gremke, NiklasIn der Gemeinsamen Normdatei der DNB nachschlagen
Lukáč, ŠtefanIn der Gemeinsamen Normdatei der DNB nachschlagen
Janni, WolfgangIn der Gemeinsamen Normdatei der DNB nachschlagen
Wallwiener, MarkusIn der Gemeinsamen Normdatei der DNB nachschlagen
Wagner, UweIn der Gemeinsamen Normdatei der DNB nachschlagen
Hirsch, MartinIn der Gemeinsamen Normdatei der DNB nachschlagen
Kuhn, Sebastian
Erscheinungsdatum: 2024
Art: Artikel
Sprache: Englisch
Zusammenfassung: Purpose: Large language models (LLM) show potential for decision support in breast cancer care. Their use in clinical care is currently prohibited by lack of control over sources used for decision-making, explainability of the decision-making process and health data security issues. Recent development of Small Language Models (SLM) is discussed to address these challenges. This preclinical proof-of-concept study tailors an open-source SLM to the German breast cancer guideline (BC-SLM) to evaluate initial clinical accuracy and technical functionality in a preclinical simulation. Methods: A multidisciplinary tumor board (MTB) is used as the gold-standard to assess the initial clinical accuracy in terms of concordance of the BC-SLM with MTB and comparing it to two publicly available LLM, ChatGPT3.5 and 4. The study includes 20 fictional patient profiles and recommendations for 5 treatment modalities, resulting in 100 binary treatment recommendations (recommended or not recommended). Statistical evaluation includes concordance with MTB in % including Cohen’s Kappa statistic (κ). Technical functionality is assessed qualitatively in terms of local hosting, adherence to the guideline and information retrieval. Results: The overall concordance amounts to 86% for BC-SLM (κ = 0.721, p < 0.001), 90% for ChatGPT4 (κ = 0.820, p < 0.001) and 83% for ChatGPT3.5 (κ = 0.661, p < 0.001). Specific concordance for each treatment modality ranges from 65 to 100% for BC-SLM, 85–100% for ChatGPT4, and 55–95% for ChatGPT3.5. The BC-SLM is locally functional, adheres to the standards of the German breast cancer guideline and provides referenced sections for its decision-making. Conclusion: The tailored BC-SLM shows initial clinical accuracy and technical functionality, with concordance to the MTB that is comparable to publicly-available LLMs like ChatGPT4 and 3.5. This serves as a proof-of-concept for adapting a SLM to an oncological disease and its guideline to address prevailing issues with LLM by ensuring decision transparency, explainability, source control, and data security, which represents a necessary step towards clinical validation and safe use of language models in clinical oncology.
URI: https://opendata.uni-halle.de//handle/1981185920/119411
http://dx.doi.org/10.25673/117452
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Journal of cancer research and clinical oncology
Verlag: Springer
Verlagsort: Berlin
Band: 150
Originalveröffentlichung: 10.1007/s00432-024-05964-3
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s00432-024-05964-3.pdf1.13 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen