Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/117822
Titel: | Topic modelling as a method for framing analysis of news coverage of the Russia-Ukraine war in 2022-2023 |
Autor(en): | Verbytska, Anna |
Erscheinungsdatum: | 2024 |
Art: | Artikel |
Sprache: | Englisch |
Zusammenfassung: | This study critically analyses the representation of the Russia-Ukraine war in Western (the Euronews) and Eastern (the Kyiv Post) media discourses. It examines how media organisations shape narratives through strategic framing. Employing the Natural Language Processing technique – Topic Modelling – with a generative probabilistic model LDA and a transformer-based language model BERT, the study reveals generic frames elaborated by more specific extensions, shedding light on media portrayal of economy, public opinion, security & defence, external regulations, policy evaluation, and health & safety sectors. Through Named Entity Recognition with roBERTa, Sentiment Analysis with distilBERT, and Corpus Linguistics methods with LancsBox X, interpretation of these overarching frames provides a comprehensive analysis of the nuances in narratives, societal perceptions and policy decisions amidst the ongoing war. |
URI: | https://opendata.uni-halle.de//handle/1981185920/119782 http://dx.doi.org/10.25673/117822 |
Open-Access: | ![]() |
Nutzungslizenz: | ![]() |
Journal Titel: | Language & communication |
Verlag: | Elsevier |
Verlagsort: | New York, NY [u.a.] |
Band: | 99 |
Originalveröffentlichung: | 10.1016/j.langcom.2024.10.004 |
Seitenanfang: | 174 |
Seitenende: | 193 |
Enthalten in den Sammlungen: | Open Access Publikationen der MLU |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
1-s2.0-S0271530924000661-main.pdf | 1.35 MB | Adobe PDF | ![]() Öffnen/Anzeigen |