Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/118037
Titel: Annual 30-m maps of global grassland class and extent (2000–2022) based on spatiotemporal Machine Learning
Autor(en): Parente, Leandro
Meyer, CarstenIn der Gemeinsamen Normdatei der DNB nachschlagen
[und viele weitere]
Erscheinungsdatum: 2024
Art: Artikel
Sprache: Englisch
Zusammenfassung: The paper describes the production and evaluation of global grassland extent mapped annually for 2000–2022 at 30 m spatial resolution. The dataset showing the spatiotemporal distribution of cultivated and natural/semi-natural grassland classes was produced by using GLAD Landsat ARD-2 image archive, accompanied by climatic, landform and proximity covariates, spatiotemporal machine learning (perclass Random Forest) and over 2.3 M reference samples (visually interpreted in Very High Resolution imagery). Custom probability thresholds (based on five-fold spatial cross-validation) were used to derive dominant class maps with balanced user’s and producer’s accuracy, resulting in f1 score of 0.64 and 0.75 for cultivated and natural/semi-natural grassland, respectively. The produced maps (about 4 TB in size) are available under an open data license as Cloud-Optimized GeoTIFFs and as Google Earth Engine assets. The suggested uses of data include (1) integration with other compatible land cover products and (2) tracking the intensity and drivers of conversion of land to cultivated grasslands and from natural / semi-natural grasslands into other land use systems.
URI: https://opendata.uni-halle.de//handle/1981185920/119996
http://dx.doi.org/10.25673/118037
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Scientific data
Verlag: Nature Publ. Group
Verlagsort: London
Band: 11
Originalveröffentlichung: 10.1038/s41597-024-04139-6
Seitenanfang: 1
Seitenende: 22
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41597-024-04139-6.pdf6.24 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen