Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/118515
Titel: Seeing economic development like a large language model : a methodological approach to the exploration of geographical imaginaries in generative AI
Autor(en): Michel, BorisIn der Gemeinsamen Normdatei der DNB nachschlagen
Eckervogt, YannickIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2025
Art: Artikel
Sprache: Englisch
Zusammenfassung: The recent hype surrounding the disruptive potential of AI technologies in the form of large language models or text to image generators also raises questions for geographical research and practice. These questions include the power relations and inequalities inscribed in these systems, their significance for work and labor relations, their ecological and economic impact, but also the geographical and spatial imaginaries they reproduce. This article focuses on the latter and formulates a series of theoretical and methodological considerations for dealing with the output of these systems. As we assume that outputs generated by large language models will play an increasing role in the future, both in public and media discourses as well as in the discourses and practices of spatial planning and economic policy making, we consider it important to gain a critical understanding of these socio-technical systems. The empirical object of investigation of this paper is generated output that deals with questions of regional development and economic challenges in three European regions that are currently particularly affected by the transition to a climate-neutral economy and are designated by the European Union as Just Transition Fund Territories. We are particularly interested in how geographical imaginaries about these regions are formulated, how economic and social problems of these regions are presented and how this is translated into planning advice and development plans.
URI: https://opendata.uni-halle.de//handle/1981185920/120473
http://dx.doi.org/10.25673/118515
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-NC-ND 4.0) Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International(CC BY-NC-ND 4.0) Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
Journal Titel: Geoforum
Verlag: Elsevier Science
Verlagsort: Amsterdam [u.a.]
Band: 158
Originalveröffentlichung: 10.1016/j.geoforum.2024.104175
Seitenanfang: 1
Seitenende: 9
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-s2.0-S0016718524002367-main.pdf565.25 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen