Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/118799
Title: | π·1,π(Rπ) versus πΆπ (Rπ, 1 + |π₯|πβπ/πβ1 πΌ) local minimizers |
Author(s): | Carl, Siegfried![]() Tehrani, Hossein |
Issue Date: | 2025 |
Type: | Article |
Language: | English |
Abstract: | Let π = π·1,π(Rπ) be the Beppo-Levi space (homogeneous Sobolev space) with 2 β€ π < π, and for πβ1 π < πΌ β€ 1 let ππΌ = πβ©πΆπ ( Rπ, 1 +|π₯| πβπ πβ1 πΌ) be the subspace of bounded continuous functions with weight 1 + |π₯| πβπ πβ1 πΌ . In this paper we prove a Brezis-Nirenberg type result for the energy functional π· βΆ π β R related to the quasilinear elliptic equation in Rπ of the form π’ β π βΆ βπ₯ππ’ = π(π₯)π(π’) in Rπ, which states that a local minimizer of π· in the ππΌ-topology must be a local minimizer in the ββbiggerββ π-topology. Global πΏβ-estimates for solutions of general quasilinear elliptic equations of divergence type in Rπ on the one hand, and decay estimates for solutions of π-Laplace equations via nonlinear Wolff potentials as well as comparison theorems for π-Laplacian type operators on the other hand play an important role in the proofs. |
URI: | https://opendata.uni-halle.de//handle/1981185920/120757 http://dx.doi.org/10.25673/118799 |
Open Access: | ![]() |
License: | ![]() |
Journal Title: | Nonlinear analysis. Real world applications |
Publisher: | Elsevier Science |
Publisher Place: | Amsterdam [u.a.] |
Volume: | 85 |
Original Publication: | 10.1016/j.nonrwa.2025.104335 |
Page Start: | 1 |
Page End: | 10 |
Appears in Collections: | Open Access Publikationen der MLU |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S1468121825000215-main.pdf | 765.29 kB | Adobe PDF | ![]() View/Open |