Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/118799
Title: π·1,𝑝(R𝑁) versus 𝐢𝑏 (R𝑁, 1 + |π‘₯|π‘βˆ’π‘/π‘βˆ’1 𝛼) local minimizers
Author(s): Carl, SiegfriedLook up in the Integrated Authority File of the German National Library
Tehrani, Hossein
Issue Date: 2025
Type: Article
Language: English
Abstract: Let 𝑋 = 𝐷1,𝑝(R𝑁) be the Beppo-Levi space (homogeneous Sobolev space) with 2 ≀ 𝑝 < 𝑁, and for π‘βˆ’1 𝑝 < 𝛼 ≀ 1 let 𝑉𝛼 = π‘‹βˆ©πΆπ‘ ( R𝑁, 1 +|π‘₯| π‘βˆ’π‘ π‘βˆ’1 𝛼) be the subspace of bounded continuous functions with weight 1 + |π‘₯| π‘βˆ’π‘ π‘βˆ’1 𝛼 . In this paper we prove a Brezis-Nirenberg type result for the energy functional 𝛷 ∢ 𝑋 β†’ R related to the quasilinear elliptic equation in R𝑁 of the form 𝑒 ∈ 𝑋 ∢ βˆ’π›₯𝑝𝑒 = π‘Ž(π‘₯)𝑔(𝑒) in R𝑁, which states that a local minimizer of 𝛷 in the 𝑉𝛼-topology must be a local minimizer in the ’’bigger’’ 𝑋-topology. Global 𝐿∞-estimates for solutions of general quasilinear elliptic equations of divergence type in R𝑁 on the one hand, and decay estimates for solutions of 𝑝-Laplace equations via nonlinear Wolff potentials as well as comparison theorems for 𝑝-Laplacian type operators on the other hand play an important role in the proofs.
URI: https://opendata.uni-halle.de//handle/1981185920/120757
http://dx.doi.org/10.25673/118799
Open Access: Open access publication
License: (CC BY-NC 4.0) Creative Commons Attribution NonCommercial 4.0(CC BY-NC 4.0) Creative Commons Attribution NonCommercial 4.0
Journal Title: Nonlinear analysis. Real world applications
Publisher: Elsevier Science
Publisher Place: Amsterdam [u.a.]
Volume: 85
Original Publication: 10.1016/j.nonrwa.2025.104335
Page Start: 1
Page End: 10
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
1-s2.0-S1468121825000215-main.pdf765.29 kBAdobe PDFThumbnail
View/Open