Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/120152
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPesovski, Ivica-
dc.contributor.authorJolakoski, Petar-
dc.contributor.authorTrajkovik, Vladimir-
dc.contributor.authorKubincova, Zusana-
dc.contributor.authorHerzog, Michael A.-
dc.date.accessioned2025-07-30T08:35:28Z-
dc.date.available2025-07-30T08:35:28Z-
dc.date.issued2025-05-30-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/122111-
dc.identifier.urihttp://dx.doi.org/10.25673/120152-
dc.description.abstractPeer influence is a significant determinant in shaping students' academic performance, yet it is often overlooked in traditional educational strategies. The ability to analyze peer influence and collaboration is an important piece in personalizing student educational experiences.-
dc.description.sponsorshipDEAL Elsevier-
dc.language.isoeng-
dc.publisherElsevier, Amsterdam-
dc.relation.isversionofhttps://doi.org/10.1016/j.caeai.2025.100430-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectPersonalized learning-
dc.subjectPeer nomination-
dc.subjectStudent network centrality-
dc.subjectAI for learning-
dc.subject.ddc006.3-
dc.titlePredicting student achievement through peer network analysis for timely personalization via generative AI-
dc.typeArtikel-
local.versionTypepublishedVersion-
local.openaccesstrue-
dc.identifier.ppn1932079521-
cbs.publication.displayformAmsterdam : Elsevier, 2025-
local.bibliographicCitation.year2025-
cbs.sru.importDate2025-07-30T08:30:47Z-
local.bibliographicCitationEnthalten in Computers and education: artificial intelligence - Amsterdam : Elsevier, 2020-
local.accessrights.dnbfree-
Appears in Collections:Fachbereich Wirtschaft

Files in This Item:
File Description SizeFormat 
1-s2.0-S2666920X25000700-main.pdfZweitveröffentlichung1.9 MBAdobe PDFThumbnail
View/Open