Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/120152
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pesovski, Ivica | - |
dc.contributor.author | Jolakoski, Petar | - |
dc.contributor.author | Trajkovik, Vladimir | - |
dc.contributor.author | Kubincova, Zusana | - |
dc.contributor.author | Herzog, Michael A. | - |
dc.date.accessioned | 2025-07-30T08:35:28Z | - |
dc.date.available | 2025-07-30T08:35:28Z | - |
dc.date.issued | 2025-05-30 | - |
dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/122111 | - |
dc.identifier.uri | http://dx.doi.org/10.25673/120152 | - |
dc.description.abstract | Peer influence is a significant determinant in shaping students' academic performance, yet it is often overlooked in traditional educational strategies. The ability to analyze peer influence and collaboration is an important piece in personalizing student educational experiences. | - |
dc.description.sponsorship | DEAL Elsevier | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier, Amsterdam | - |
dc.relation.isversionof | https://doi.org/10.1016/j.caeai.2025.100430 | - |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Personalized learning | - |
dc.subject | Peer nomination | - |
dc.subject | Student network centrality | - |
dc.subject | AI for learning | - |
dc.subject.ddc | 006.3 | - |
dc.title | Predicting student achievement through peer network analysis for timely personalization via generative AI | - |
dc.type | Artikel | - |
local.versionType | publishedVersion | - |
local.openaccess | true | - |
dc.identifier.ppn | 1932079521 | - |
cbs.publication.displayform | Amsterdam : Elsevier, 2025 | - |
local.bibliographicCitation.year | 2025 | - |
cbs.sru.importDate | 2025-07-30T08:30:47Z | - |
local.bibliographicCitation | Enthalten in Computers and education: artificial intelligence - Amsterdam : Elsevier, 2020 | - |
local.accessrights.dnb | free | - |
Appears in Collections: | Fachbereich Wirtschaft |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S2666920X25000700-main.pdf | Zweitveröffentlichung | 1.9 MB | Adobe PDF | ![]() View/Open |