Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/120691| Titel: | Artificial intelligence-assisted biparametric MRI for detecting prostate cancer : a comparative multireader multicase accuracy study |
| Autor(en): | Nißler, Daniel Berger, Frank Peter [und viele weitere] |
| Erscheinungsdatum: | 2025 |
| Art: | Artikel |
| Sprache: | Englisch |
| Zusammenfassung: | Objectives: To evaluate the diagnostic accuracy of AI-assisted biparametric MRI (AI-bpMRI) in detecting prostate cancer (PCa) as a possible replacement for multiparametric MRI (mpMRI) depending on readers’ experience. Methods: This fully crossed, multireader multicase, single-centre, consecutive study retrospectively included men with suspected PCa. Three radiologists with different levels of experience independently scored each participant’s biparametric (bp) MRI, mpMRI, and AI-bpMRI according to the PI-RADS V2.1 classification. The AI-assisted image processing was based on a sequential deep learning network. Histopathological findings were used as a reference. The study evaluated the mean areas under the receiver operating characteristic curves (AUCs) using the jackknife method for covariance. AUCs were tested for non-inferiority of AI-bpMRI to mpMRI (non-inferiority margin: −0.05). Results: A total of 105 men (mean age 66 ± 7 years) were evaluated. AI-bpMRI was non-inferior to mpMRI in detecting both Gleason score (GS) ≥ 3 + 4 PCa (AUC difference: 0.03 [95% CI: −0.03, 0.08], p = 0.37) and GS ≥ 3 + 3 PCa (AUC difference: 0.04 [95% CI: −0.01, 0.09], p = 0.14) and was superior to bpMRI in detecting GS ≥ 3 + 3 PCa (AUC difference: 0.07 [95% CI: 0.02, 0.12], p = 0.004). The benefit of AI-bpMRI was greatest for the readers with low or medium experience (AUC difference in detecting GS ≥ 3 + 4 compared to mpMRI: 0.06 [95% CI: −0.03, 0.14], p = 0.19 and 0.06 [95% CI: −0.03, 0.14], p = 0.19, respectively). Conclusions: This study indicates that AI-bpMRI detects PCa with a diagnostic accuracy comparable to that of mpMRI. |
| URI: | https://opendata.uni-halle.de//handle/1981185920/122646 http://dx.doi.org/10.25673/120691 |
| Open-Access: | Open-Access-Publikation |
| Nutzungslizenz: | (CC BY 4.0) Creative Commons Namensnennung 4.0 International |
| Journal Titel: | Journal of Clinical Medicine |
| Verlag: | MDPI |
| Verlagsort: | Basel |
| Band: | 14 |
| Heft: | 17 |
| Originalveröffentlichung: | 10.3390/jcm14176111 |
| Seitenanfang: | 1 |
| Seitenende: | 15 |
| Enthalten in den Sammlungen: | Open Access Publikationen der MLU |
Dateien zu dieser Ressource:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| jcm-14-06111.pdf | 6.89 MB | Adobe PDF | ![]() Öffnen/Anzeigen |
Open-Access-Publikation
