Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/121016
Titel: Intelligent Skin Cancer Detection from Dermoscopic Images with Machine and Deep Learning Approaches
Autor(en): Jawad, Ali Abdul Karim
Hindi, Asaad Abbas
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025-07-26
Umfang: 1 Online-Ressource (7 Seiten)
Sprache: Englisch
Zusammenfassung: Melanoma, in particular, is one of the most common and dangerous cancers in the world, and early diagnosis is critical to improving survival rates. A traditional diagnostic method, such as visual examination or dermoscopy, often requires expert intervention, but it can be challenging to distinguish early-stage melanoma from benign lesions. Artificial intelligence (AI), particularly machine learning and deep learning techniques, are applied to dermoscopic images in this study to detect skin cancer more accurately. Results showed that deep learning models were more accurate, more recallable, and had higher F scores than traditional machine learning algorithms. We compare the performance of Logistic Regression, K-Nearest Neighbors, and advanced deep learning architectures such as Xception, VGG16, and ResNet50 on two public datasets containing dermatoscopic images, HAM10000 and PH2. As a result of the study, deep learning models, especially when fine-tuned, offer significant improvements in detecting skin lesions, including melanoma, allowing for early detection.
URI: https://opendata.uni-halle.de//handle/1981185920/122971
http://dx.doi.org/10.25673/121016
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
4-8-ICAIIT_2025_13(3).pdf929.85 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen