Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/121036
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKukushkin, Maksim-
dc.contributor.authorBogdan, Martin-
dc.contributor.authorGoertz, Simon-
dc.contributor.authorCallsen, Jan-Ole-
dc.contributor.authorOldenburg, Erich-
dc.contributor.authorEnders, Matthias-
dc.contributor.authorSchmid, Thomas-
dc.date.accessioned2025-11-05T07:03:11Z-
dc.date.available2025-11-05T07:03:11Z-
dc.date.issued2025-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/122991-
dc.identifier.urihttp://dx.doi.org/10.25673/121036-
dc.description.abstractThe success of deep learning in image classification has been largely underpinned by large-scale datasets, such as ImageNet, which have significantly advanced multi-class classification for RGB and grayscale images. However, datasets that capture spectral information beyond the visible spectrum remain scarce, despite their high potential, especially in agriculture, medicine and remote sensing. To address this gap in the agricultural domain, we present a thoroughly curated bimodal seed image dataset comprising paired RGB and hyperspectral images for 10 plant species, making it one of the largest bimodal seed datasets available. We describe the methodology for data collection and preprocessing and benchmark several deep learning models on the dataset to evaluate their multi-class classification performance. By contributing a high-quality dataset, our manuscript offers a valuable resource for studying spectral, spatial and morphological properties of seeds, thereby opening new avenues for research and applications.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc610-
dc.titleA bimodal image dataset for seed classification from the visible and near-infrared spectrumeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleScientific data-
local.bibliographicCitation.volume12-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend13-
local.bibliographicCitation.publishernameNature Publ. Group-
local.bibliographicCitation.publisherplaceLondon-
local.bibliographicCitation.doi10.1038/s41597-025-05979-6-
local.openaccesstrue-
dc.identifier.ppn1940277817-
cbs.publication.displayform2025-
local.bibliographicCitation.year2025-
cbs.sru.importDate2025-11-05T07:02:48Z-
local.bibliographicCitationEnthalten in Scientific data - London : Nature Publ. Group, 2014-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s41597-025-05979-6.pdf3 MBAdobe PDFThumbnail
View/Open