Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/121036
Titel: A bimodal image dataset for seed classification from the visible and near-infrared spectrum
Autor(en): Kukushkin, Maksim
Bogdan, MartinIn der Gemeinsamen Normdatei der DNB nachschlagen
Goertz, SimonIn der Gemeinsamen Normdatei der DNB nachschlagen
Callsen, Jan-Ole
Oldenburg, ErichIn der Gemeinsamen Normdatei der DNB nachschlagen
Enders, MatthiasIn der Gemeinsamen Normdatei der DNB nachschlagen
Schmid, Thomas
Erscheinungsdatum: 2025
Art: Artikel
Sprache: Englisch
Zusammenfassung: The success of deep learning in image classification has been largely underpinned by large-scale datasets, such as ImageNet, which have significantly advanced multi-class classification for RGB and grayscale images. However, datasets that capture spectral information beyond the visible spectrum remain scarce, despite their high potential, especially in agriculture, medicine and remote sensing. To address this gap in the agricultural domain, we present a thoroughly curated bimodal seed image dataset comprising paired RGB and hyperspectral images for 10 plant species, making it one of the largest bimodal seed datasets available. We describe the methodology for data collection and preprocessing and benchmark several deep learning models on the dataset to evaluate their multi-class classification performance. By contributing a high-quality dataset, our manuscript offers a valuable resource for studying spectral, spatial and morphological properties of seeds, thereby opening new avenues for research and applications.
URI: https://opendata.uni-halle.de//handle/1981185920/122991
http://dx.doi.org/10.25673/121036
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Scientific data
Verlag: Nature Publ. Group
Verlagsort: London
Band: 12
Originalveröffentlichung: 10.1038/s41597-025-05979-6
Seitenanfang: 1
Seitenende: 13
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41597-025-05979-6.pdf3 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen