Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/121136
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJanczewska, Joanna-
dc.contributor.authorMöckel, Melanie-
dc.contributor.authorWaterstraat, Nils-
dc.date.accessioned2025-11-07T07:47:19Z-
dc.date.available2025-11-07T07:47:19Z-
dc.date.issued2025-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/123089-
dc.identifier.urihttp://dx.doi.org/10.25673/121136-
dc.description.abstractWe consider families of strongly indefinite systems of elliptic PDE and investigate bifurcation from a trivial branch of solutions by using the spectral flow. The novelty in our approach is a refined way to apply a comparison principle which is based on an index theorem for a certain class of Fredholm operators that is of independent interest. Finally, we use our findings for a bifurcation problem on shrinking domains that originates from works of Morse and Smale.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc510-
dc.titleBifurcation for a class of indefinite elliptic systems by comparison theory for the spectral flow via an index theoremeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleNonlinear differential equations and applications-
local.bibliographicCitation.volume32-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend23-
local.bibliographicCitation.publishername[Springer International Publishing AG]-
local.bibliographicCitation.publisherplace[Cham (ZG)]-
local.bibliographicCitation.doi10.1007/s00030-025-01126-7-
local.openaccesstrue-
dc.identifier.ppn1940624916-
cbs.publication.displayform2025-
local.bibliographicCitation.year2025-
cbs.sru.importDate2025-11-07T07:46:42Z-
local.bibliographicCitationEnthalten in Nonlinear differential equations and applications - [Cham (ZG)] : [Springer International Publishing AG], 1994-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s00030-025-01126-7.pdf436.73 kBAdobe PDFThumbnail
View/Open