Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/121591
Full metadata record
DC FieldValueLanguage
dc.contributor.refereeRedmann, Martin-
dc.contributor.refereeGreksch, Wilfried-
dc.contributor.refereeWunderlich, Ralf-
dc.contributor.authorJamshidi, Nahid-
dc.date.accessioned2025-12-05T12:51:55Z-
dc.date.available2025-12-05T12:51:55Z-
dc.date.issued2025-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/123543-
dc.identifier.urihttp://dx.doi.org/10.25673/121591-
dc.description.abstractThis dissertation investigates model order reduction (MOR) for high-dimensional stochastic differential equations (SDEs) and spatially discretized stochastic partial differential equations (SPDEs) driven by standard and fractional Brownian motion. Efficient MOR schemes are developed for unstable stochastic systems using Gramian-based approaches and Lyapunov equations, complemented by variance-reduced sampling methods. Error bounds are derived to guide reduced system dimension. For systems driven by fractional Brownian motion with H ∈ [1/2,1), empirical reduction techniques using Young and Stratonovich interpretations are proposed. Numerical experiments confirm the computational efficiency and accuracy of the presented MOR strategies in stochastic settings.eng
dc.format.extent1 Online-Ressource (160 Seiten)-
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc510-
dc.titleModel order reduction for stochastic differential equations driven by standard and fractional Brownian motioneng
dcterms.dateAccepted2025-11-07-
dcterms.typeHochschulschrift-
dc.typePhDThesis-
dc.identifier.urnurn:nbn:de:gbv:3:4-1981185920-1235437-
local.versionTypepublishedVersion-
local.publisher.universityOrInstitutionMartin-Luther-Universität Halle-Wittenberg-
local.subject.keywordsModel Order Reduction (MOR), Differential Equations (SDEs), Stochastic Partial Differential Equations (SPDEs), Standard Brownian Motion (sBm), Fractional Brownian Motion (fBm), Spectral Galerkin Method, Gramian-based Model Reduction, Balanced Truncation (BT), Proper Orthogonal Decomposition (POD), Reduced Order Models (ROMs)-
local.openaccesstrue-
dc.identifier.ppn1944953795-
cbs.publication.displayformHalle, 2025-
local.publication.countryXA-DE-
cbs.sru.importDate2025-12-05T12:50:59Z-
local.accessrights.dnbfree-
Appears in Collections:Interne-Einreichungen

Files in This Item:
File Description SizeFormat 
Dissertation_MLU_2025_JamshidiNahid.pdf3.38 MBAdobe PDFThumbnail
View/Open