Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/121782
Title: Upper bounds for the homogenization problem in nonlinear elasticity : the incompressible case
Author(s): Ruf, MatthiasLook up in the Integrated Authority File of the German National Library
Schäffner, MathiasLook up in the Integrated Authority File of the German National Library
Issue Date: 2026
Type: Article
Language: English
Abstract: We consider periodic homogenization of hyperelastic models incorporating incompressible behavior via the constraint det(∇u) = 1. We show that the ’usual’ homogenized integral functional ´ Whom(∇u) dx, where Whom is the standard multicell-formula of non-convex homogenization restricted to volume preserving deformations, yields an upper bound for the -limit as the scale of periodicity tends to zero.
URI: https://opendata.uni-halle.de//handle/1981185920/123733
http://dx.doi.org/10.25673/121782
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Calculus of variations and partial differential equations
Publisher: Springer
Publisher Place: Berlin
Volume: 65
Original Publication: 10.1007/s00526-025-03177-1
Page Start: 1
Page End: 21
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s00526-025-03177-1.pdf402.61 kBAdobe PDFThumbnail
View/Open