Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/121782| Title: | Upper bounds for the homogenization problem in nonlinear elasticity : the incompressible case |
| Author(s): | Ruf, Matthias Schäffner, Mathias |
| Issue Date: | 2026 |
| Type: | Article |
| Language: | English |
| Abstract: | We consider periodic homogenization of hyperelastic models incorporating incompressible behavior via the constraint det(∇u) = 1. We show that the ’usual’ homogenized integral functional ´ Whom(∇u) dx, where Whom is the standard multicell-formula of non-convex homogenization restricted to volume preserving deformations, yields an upper bound for the -limit as the scale of periodicity tends to zero. |
| URI: | https://opendata.uni-halle.de//handle/1981185920/123733 http://dx.doi.org/10.25673/121782 |
| Open Access: | Open access publication |
| License: | (CC BY 4.0) Creative Commons Attribution 4.0 |
| Journal Title: | Calculus of variations and partial differential equations |
| Publisher: | Springer |
| Publisher Place: | Berlin |
| Volume: | 65 |
| Original Publication: | 10.1007/s00526-025-03177-1 |
| Page Start: | 1 |
| Page End: | 21 |
| Appears in Collections: | Open Access Publikationen der MLU |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| s00526-025-03177-1.pdf | 402.61 kB | Adobe PDF | ![]() View/Open |
Open access publication
