Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/122078| Titel: | A Hybrid Spiking-Attention Transformer Model for Robust and Efficient Speech Emotion Recognition on Multi-Dataset Benchmarks |
| Autor(en): | Abbas Ali, Samah |
| Körperschaft: | Hochschule Anhalt |
| Erscheinungsdatum: | 2025-08 |
| Umfang: | 1 Online-Ressource (7 Seiten) |
| Sprache: | Englisch |
| Zusammenfassung: | This study introduces a novel and effective method for Speech Emotion Recognition (SER) that combines Spiking Neural Networks (SNNs), Temporal Attention, and Transformer encoders within a powerful hybrid model. SER is essential for improving human-computer interaction by enabling intelligent systems to effectively recognize emotions from speech. Unlike traditional methods that typically rely on shallow classifiers and manually engineered features, our deep learning-based approach takes full advantage of the energy efficiency of SNNs, the selective focus provided by temporal attention, and the long-range temporal modeling capabilities of Transformer architectures. We thoroughly evaluated the performance of this model on a comprehensive multi-dataset corpus, which included TESS, SAVEE, RAVDESS, and CREMA-D. The model achieved an impressive and consistent accuracy of 98% across all emotion classes. These strong results not only demonstrate the model’s superior effectiveness but also highlight its potential for use in real-time, resource-limited environments. Furthermore, this hybrid approach clearly surpasses existing state-of-the-art SER techniques and offers a reliable foundation for application in real-world affective computing scenarios. |
| URI: | https://opendata.uni-halle.de//handle/1981185920/124026 http://dx.doi.org/10.25673/122078 |
| Open-Access: | Open-Access-Publikation |
| Nutzungslizenz: | (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International |
| Enthalten in den Sammlungen: | International Conference on Applied Innovations in IT (ICAIIT) |
Dateien zu dieser Ressource:
| Datei | Größe | Format | |
|---|---|---|---|
| 2-8-ICAIIT_2025_13(4).pdf | 1.03 MB | Adobe PDF | Öffnen/Anzeigen |
Open-Access-Publikation