Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/122078
Titel: A Hybrid Spiking-Attention Transformer Model for Robust and Efficient Speech Emotion Recognition on Multi-Dataset Benchmarks
Autor(en): Abbas Ali, Samah
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025-08
Umfang: 1 Online-Ressource (7 Seiten)
Sprache: Englisch
Zusammenfassung: This study introduces a novel and effective method for Speech Emotion Recognition (SER) that combines Spiking Neural Networks (SNNs), Temporal Attention, and Transformer encoders within a powerful hybrid model. SER is essential for improving human-computer interaction by enabling intelligent systems to effectively recognize emotions from speech. Unlike traditional methods that typically rely on shallow classifiers and manually engineered features, our deep learning-based approach takes full advantage of the energy efficiency of SNNs, the selective focus provided by temporal attention, and the long-range temporal modeling capabilities of Transformer architectures. We thoroughly evaluated the performance of this model on a comprehensive multi-dataset corpus, which included TESS, SAVEE, RAVDESS, and CREMA-D. The model achieved an impressive and consistent accuracy of 98% across all emotion classes. These strong results not only demonstrate the model’s superior effectiveness but also highlight its potential for use in real-time, resource-limited environments. Furthermore, this hybrid approach clearly surpasses existing state-of-the-art SER techniques and offers a reliable foundation for application in real-world affective computing scenarios.
URI: https://opendata.uni-halle.de//handle/1981185920/124026
http://dx.doi.org/10.25673/122078
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei GrößeFormat 
2-8-ICAIIT_2025_13(4).pdf1.03 MBAdobe PDFÖffnen/Anzeigen