Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/73767
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKopecz, Stefan-
dc.contributor.authorMeister, Andreas-
dc.contributor.authorPodhaisky, Helmut-
dc.date.accessioned2022-03-08T08:39:50Z-
dc.date.available2022-03-08T08:39:50Z-
dc.date.issued2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/75719-
dc.identifier.urihttp://dx.doi.org/10.25673/73767-
dc.description.abstractWe apply Patankar Runge–Kutta methods to y′ = M(y)y and focus on the case where M(y) is a graph Laplacian as the resulting scheme will preserve positivity and total mass. The second order Patankar Heun method is tested using four test problems (stiff and non-stiff) cast into this form. The local error is estimated and the step size is chosen adaptively. Concerning accuracy and efficiency, the results are comparable to those obtained with a traditional L-stable, second order Rosenbrock method.eng
dc.description.sponsorshipPublikationsfonds MLU-
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/-
dc.subject.ddc518-
dc.titleOn adaptive Patankar Runge–Kutta methodseng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleProceedings in applied mathematics and mechanics-
local.bibliographicCitation.volume21-
local.bibliographicCitation.issue1-
local.bibliographicCitation.publishernameWiley-VCH-
local.bibliographicCitation.publisherplaceWeinheim [u.a.]-
local.bibliographicCitation.doi10.1002/pamm.202100235-
local.openaccesstrue-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
Proc Appl Math Mech - 2021 - Kopecz - On Adaptive Patankar Runge Kutta methods.pdf205.67 kBAdobe PDFThumbnail
View/Open