Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/73767
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kopecz, Stefan | - |
dc.contributor.author | Meister, Andreas | - |
dc.contributor.author | Podhaisky, Helmut | - |
dc.date.accessioned | 2022-03-08T08:39:50Z | - |
dc.date.available | 2022-03-08T08:39:50Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/75719 | - |
dc.identifier.uri | http://dx.doi.org/10.25673/73767 | - |
dc.description.abstract | We apply Patankar Runge–Kutta methods to y′ = M(y)y and focus on the case where M(y) is a graph Laplacian as the resulting scheme will preserve positivity and total mass. The second order Patankar Heun method is tested using four test problems (stiff and non-stiff) cast into this form. The local error is estimated and the step size is chosen adaptively. Concerning accuracy and efficiency, the results are comparable to those obtained with a traditional L-stable, second order Rosenbrock method. | eng |
dc.description.sponsorship | Publikationsfonds MLU | - |
dc.language.iso | eng | - |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | - |
dc.subject.ddc | 518 | - |
dc.title | On adaptive Patankar Runge–Kutta methods | eng |
dc.type | Article | - |
local.versionType | publishedVersion | - |
local.bibliographicCitation.journaltitle | Proceedings in applied mathematics and mechanics | - |
local.bibliographicCitation.volume | 21 | - |
local.bibliographicCitation.issue | 1 | - |
local.bibliographicCitation.publishername | Wiley-VCH | - |
local.bibliographicCitation.publisherplace | Weinheim [u.a.] | - |
local.bibliographicCitation.doi | 10.1002/pamm.202100235 | - |
local.openaccess | true | - |
local.accessrights.dnb | free | - |
Appears in Collections: | Open Access Publikationen der MLU |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Proc Appl Math Mech - 2021 - Kopecz - On Adaptive Patankar Runge Kutta methods.pdf | 205.67 kB | Adobe PDF | View/Open |