Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/78127
Titel: | Gait phase estimation by using LSTM in IMU-based gait analysis : proof of concept |
Autor(en): | Sarshar, Mustafa Polturi, Sasanka Schega, Lutz |
Erscheinungsdatum: | 2021 |
Art: | Artikel |
Sprache: | Englisch |
URN: | urn:nbn:de:gbv:ma9:1-1981185920-800818 |
Schlagwörter: | Inertial measurement unit Supervised deep learning |
Zusammenfassung: | Gait phase detection in IMU-based gait analysis has some limitations due to walking style variations and physical impairments of individuals. Therefore, available algorithms may not work properly when the gait data is noisy, or the person rarely reaches a steady state of walking. The aim of this work was to employ Artificial Intelligence (AI), specifically a long short-term memory (LSTM) algorithm, to overcome these weaknesses. Three supervised LSTM-based models were designed to estimate the expected gait phases, including foot-off (FO), mid-swing (MidS) and foot-contact (FC). For collecting gait data two tri-axial inertial sensors were located above each ankle. The angular velocity magnitude, rotation matrix magnitude and free acceleration magnitude were captured for data labeling and turning detection and to strengthen the model, respectively. To do so, a train dataset based on a novel movement protocol was acquired. A validation dataset similar to a train dataset was generated as well. Five test datasets from already existing data were also created to independently evaluate the models. After testing the models on validation and test datasets, all three models demonstrated promising performance in estimating desired gait phases. The proposed approach proves the possibility of employing AI-based algorithms to predict labeled gait phases from a time series of gait data. |
URI: | https://opendata.uni-halle.de//handle/1981185920/80081 http://dx.doi.org/10.25673/78127 |
Open-Access: | Open-Access-Publikation |
Nutzungslizenz: | (CC BY 4.0) Creative Commons Namensnennung 4.0 International |
Sponsor/Geldgeber: | OVGU-Publikationsfonds 2021 |
Journal Titel: | Sensors |
Verlag: | MDPI |
Verlagsort: | Basel |
Band: | 21 |
Heft: | 17 |
Originalveröffentlichung: | 10.3390/s21175749 |
Seitenanfang: | 1 |
Seitenende: | 13 |
Enthalten in den Sammlungen: | Fakultät für Humanwissenschaften (ehemals: Fakultät für Geistes-, Sozial- und Erziehungswissenschaften) (OA) |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Sarshar et al._Gait phase_2021.pdf | Zweitveröffentlichung | 1.44 MB | Adobe PDF | Öffnen/Anzeigen |