Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/78127
Titel: Gait phase estimation by using LSTM in IMU-based gait analysis : proof of concept
Autor(en): Sarshar, Mustafa
Polturi, Sasanka
Schega, LutzIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-800818
Schlagwörter: Inertial measurement unit
Supervised deep learning
Zusammenfassung: Gait phase detection in IMU-based gait analysis has some limitations due to walking style variations and physical impairments of individuals. Therefore, available algorithms may not work properly when the gait data is noisy, or the person rarely reaches a steady state of walking. The aim of this work was to employ Artificial Intelligence (AI), specifically a long short-term memory (LSTM) algorithm, to overcome these weaknesses. Three supervised LSTM-based models were designed to estimate the expected gait phases, including foot-off (FO), mid-swing (MidS) and foot-contact (FC). For collecting gait data two tri-axial inertial sensors were located above each ankle. The angular velocity magnitude, rotation matrix magnitude and free acceleration magnitude were captured for data labeling and turning detection and to strengthen the model, respectively. To do so, a train dataset based on a novel movement protocol was acquired. A validation dataset similar to a train dataset was generated as well. Five test datasets from already existing data were also created to independently evaluate the models. After testing the models on validation and test datasets, all three models demonstrated promising performance in estimating desired gait phases. The proposed approach proves the possibility of employing AI-based algorithms to predict labeled gait phases from a time series of gait data.
URI: https://opendata.uni-halle.de//handle/1981185920/80081
http://dx.doi.org/10.25673/78127
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: OVGU-Publikationsfonds 2021
Journal Titel: Sensors
Verlag: MDPI
Verlagsort: Basel
Band: 21
Heft: 17
Originalveröffentlichung: 10.3390/s21175749
Seitenanfang: 1
Seitenende: 13
Enthalten in den Sammlungen:Fakultät für Humanwissenschaften (ehemals: Fakultät für Geistes-, Sozial- und Erziehungswissenschaften) (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Sarshar et al._Gait phase_2021.pdfZweitveröffentlichung1.44 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen