Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/79641Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Izydorek, Marek | - |
| dc.contributor.author | Janczewska, Joanna | - |
| dc.contributor.author | Waterstraat, Nils | - |
| dc.date.accessioned | 2022-03-29T12:18:06Z | - |
| dc.date.available | 2022-03-29T12:18:06Z | - |
| dc.date.issued | 2021 | - |
| dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/81595 | - |
| dc.identifier.uri | http://dx.doi.org/10.25673/79641 | - |
| dc.description.abstract | We define a spectral flow for paths of selfadjoint Fredholm operators that are equivariant under the orthogonal action of a compact Lie group as an element of the representation ring of the latter. This -equivariant spectral flow shares all common properties of the integer valued classical spectral flow, and it can be non-trivial even if the classical spectral flow vanishes. Our main theorem uses the -equivariant spectral flow to study bifurcation of periodic solutions for autonomous Hamiltonian systems with symmetries. | eng |
| dc.description.sponsorship | Publikationsfonds MLU | - |
| dc.language.iso | eng | - |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
| dc.subject.ddc | 515 | - |
| dc.title | The equivariant spectral flow and bifurcation of periodic solutions of Hamiltonian systems | eng |
| dc.type | Article | - |
| local.versionType | publishedVersion | - |
| local.bibliographicCitation.journaltitle | Nonlinear analysis | - |
| local.bibliographicCitation.volume | 211 | - |
| local.bibliographicCitation.publishername | Elsevier, Pergamon Press | - |
| local.bibliographicCitation.publisherplace | Amsterdam [u.a.] | - |
| local.bibliographicCitation.doi | 10.1016/j.na.2021.112475 | - |
| local.openaccess | true | - |
| local.accessrights.dnb | free | - |
| Appears in Collections: | Open Access Publikationen der MLU | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 1-s2.0-S0362546X21001486-main.pdf | 852.77 kB | Adobe PDF | ![]() View/Open |
