Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/81333
Titel: Machine learning for 3D particle tracking in granular gases
Autor(en): Puzyrev, Dmitry
Harth, Kirsten
Trittel, Torsten
Stannarius, Ralf
Erscheinungsdatum: 2020
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-832887
Schlagwörter: Machine learning
Granular gas
Particle tracking
Object detection
Mask-CNN
Zusammenfassung: Dilute ensembles of granular matter (so-called granular gases) are nonlinear systems which exhibit fascinating dynamical behavior far from equilibrium, including non-Gaussian distributions of velocities and rotational velocities, clustering, and violation of energy equipartition. In order to understand their dynamic properties, microgravity experiments were performed in suborbital flights and drop tower experiments. Up to now, the experimental images were evaluated mostly manually. Here, we introduce an approach for automatic 3D tracking of positions and orientations of rod-like particles in a dilute ensemble, based on two-view video data analysis. A two-dimensional (2D) localization of particles is performed using a Mask R-CNN neural network trained on a custom data set. The problem of 3D matching of the particles is solved by minimization of the total reprojection error, and finally, particle trajectories are tracked so that ensemble statistics are extracted. Depending on the required accuracy, the software can work fully self-sustainingly or serve as a base for subsequent manual corrections. The approach can be extended to other 3D and 2D particle tracking problems.
URI: https://opendata.uni-halle.de//handle/1981185920/83288
http://dx.doi.org/10.25673/81333
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: Projekt DEAL 2020
Journal Titel: Microgravity science and technology
Verlag: Springer
Verlagsort: Heidelberg
Band: 32
Heft: 5
Originalveröffentlichung: 10.1007/s12217-020-09800-4
Seitenanfang: 897
Seitenende: 906
Enthalten in den Sammlungen:Fakultät für Naturwissenschaften (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Puzyrev et al._Machine learning_2020.pdfZweitveröffentlichung2.68 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen