Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/85771
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHahn, Tim-
dc.contributor.authorErnsting, Jan-
dc.contributor.authorWinter, Nils R.-
dc.contributor.authorHolstein, Vincent-
dc.contributor.authorLeenings, Ramona-
dc.contributor.authorBeisemann, Marie-
dc.contributor.authorFisch, Lukas-
dc.contributor.authorSarink, Kelvin-
dc.contributor.authorEmden, Daniel-
dc.contributor.authorOpel, Nils-
dc.contributor.authorRedlich, Ronny-
dc.contributor.authorRepple, Jonathan-
dc.contributor.authorGrotegerd, Dominik-
dc.contributor.authorMeinert, Susanne-
dc.contributor.authorHirsch, Jochen G.-
dc.contributor.authorNiendorf, Thoralf-
dc.contributor.authorEndemann, Beate-
dc.contributor.authorBamberg, Fabian-
dc.contributor.authorKröncke, Thomas-
dc.contributor.authorBülow, Robin-
dc.contributor.authorVölzke, Henry-
dc.contributor.authorvon Stackelberg, Oyunbileg-
dc.contributor.authorSowade, Ramona Felizitas-
dc.contributor.authorUmutlu, Lale-
dc.contributor.authorSchmidt, Börge-
dc.contributor.authorCaspers, Svenja-
dc.contributor.authorKugel, Harald-
dc.contributor.authorKircher, Tilo-
dc.contributor.authorRisse, Benjamin-
dc.contributor.authorGaser, Christian-
dc.contributor.authorCole, James H.-
dc.contributor.authorDannlowski, Udo-
dc.contributor.authorBerger, Klaus-
dc.date.accessioned2022-05-13T06:31:39Z-
dc.date.available2022-05-13T06:31:39Z-
dc.date.issued2022-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/87723-
dc.identifier.urihttp://dx.doi.org/10.25673/85771-
dc.description.abstractThe deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available.eng
dc.description.sponsorshipPublikationsfonds MLU-
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/-
dc.subject.ddc612-
dc.titleAn uncertainty-aware, shareable, and transparent neural network architecture for brain-age modelingeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleScience advances-
local.bibliographicCitation.volume8-
local.bibliographicCitation.issue1-
local.bibliographicCitation.publishernameAssoc.-
local.bibliographicCitation.publisherplaceWashington, DC [u.a.]-
local.bibliographicCitation.doi10.1126/sciadv.abg9471-
local.openaccesstrue-
dc.identifier.ppn1801387990-
local.bibliographicCitation.year2022-
cbs.sru.importDate2022-05-13T06:29:59Z-
local.bibliographicCitationEnthalten in Science advances - Washington, DC [u.a.] : Assoc., 2015-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
sciadv.abg9471.pdf307.23 kBAdobe PDFThumbnail
View/Open