Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/92706
Titel: Using a deep neural network to predict the motion of underresolved triangular rigid bodies in an incompressible flow
Autor(en): Wahl, HenryIn der Gemeinsamen Normdatei der DNB nachschlagen
Richter, Thomas
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-946621
Schlagwörter: Deep neural network
Fluid–structure interaction
Level set
Navier–Stokes
Rigid particles
Zusammenfassung: We consider nonspherical rigid body particles in an incompressible fluid in the regime where the particles are too large to assume that they are simply transported with the fluid without back-coupling and where the particles are also too small to make fully resolved direct numerical simulations feasible. Unfitted finite element methods with ghost-penalty stabilization are well suited to fluid-structure-interaction problems as posed by this setting, due to the flexible and accurate geometry handling and for allowing topology changes in the geometry. In the computationally underresolved setting posed here, accurate computations of the forces by their boundary integral formulation are not viable. Furthermore, analytical laws are not available due to the shape of the particles. However, accurate values of the forces are essential for realistic motion of the particles. To obtain these forces accurately, we train an artificial deep neural network using data from prototypical resolved simulations. This network is then able to predict the force values based on information which can be obtained accurately in an underresolved setting. As a result, we obtain forces on very coarse and underresolved meshes which are on average an order of magnitude more accurate compared with the direct boundary-integral computation from the Navier–Stokes solution, leading to solidmotion comparable to that obtained on highly resolved meshes that would substantially increase the simulation costs.
URI: https://opendata.uni-halle.de//handle/1981185920/94662
http://dx.doi.org/10.25673/92706
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: Projekt DEAL 2021
Journal Titel: International journal for numerical methods in fluids
Verlag: Wiley
Verlagsort: Chichester
Band: 93
Heft: 12
Originalveröffentlichung: 10.1002/fld.5037
Seitenanfang: 3364
Seitenende: 3383
Enthalten in den Sammlungen:Fakultät für Mathematik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Wahl et al._Using a deep_2021.pdfZweitveröffentlichung33.46 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen