Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/110709
Titel: Predicting stable crystalline compounds using chemical similarity
Autor(en): Wang, Hai-Chen
Botti, SilvanaIn der Gemeinsamen Normdatei der DNB nachschlagen
Marques, MiguelIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
Zusammenfassung: We propose an efficient high-throughput scheme for the discovery of stable crystalline phases. Our approach is based on the transmutation of known compounds, through the substitution of atoms in the crystal structure with chemically similar ones. The concept of similarity is defined quantitatively using a measure of chemical replaceability, extracted by data-mining experimental databases. In this way we build 189,981 possible crystal phases, including 18,479 that are on the convex hull of stability. The resulting success rate of 9.72% is at least one order of magnitude better than the usual success rate of systematic high-throughput calculations for a specific family of materials, and comparable with speed-up factors of machine learning filtering procedures. As a characterization of the set of 18,479 stable compounds, we calculate their electronic band gaps, magnetic moments, and hardness. Our approach, that can be used as a filter on top of any high-throughput scheme, enables us to efficiently extract stable compounds from tremendously large initial sets, without any initial assumption on their crystal structures or chemical compositions.
URI: https://opendata.uni-halle.de//handle/1981185920/112664
http://dx.doi.org/10.25673/110709
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: npj computational materials
Verlag: Nature Publ. Group
Verlagsort: London
Band: 7
Originalveröffentlichung: 10.1038/s41524-020-00481-6
Seitenanfang: 1
Seitenende: 9
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41524-020-00481-6.pdf1.57 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen