Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/111736
Title: From specification to test cases : a state-machine-based approach using image recognition
Author(s): Otto, Björn
Gröpler, Robin
Meinecke, Karsten
Kleinert, Tobias
Issue Date: 2023
Type: Conference object
Language: English
URN: urn:nbn:de:gbv:ma9:1-1981185920-1136931
Subjects: Software testing
Model-based Testing (MBT)
Finite state machine (FSM)
Test case
Abstract: Software testing enables the assessment and assurance of software quality. However, writing test cases manually is time-consuming and error-prone. To avoid this, test cases can be generated automatically using Model-based Testing (MBT). MBT derives tests from a test model like a finite state machine (FSM). Such FSMs are often part of specifications, but unfortunately, often only provided as image and not in machine-readable form. Therefore, in this work we present an approach to extract machine-readable representations of FSMs from images automatically using Neural Networks. Additionally, we evaluate the applicability of our approach using a real-world specification to generate test cases from it.
URI: https://opendata.uni-halle.de//handle/1981185920/113693
http://dx.doi.org/10.25673/111736
Open Access: Open access publication
License: (CC BY-SA 4.0) Creative Commons Attribution ShareAlike 4.0(CC BY-SA 4.0) Creative Commons Attribution ShareAlike 4.0
Appears in Collections:Fakultät für Elektrotechnik und Informationstechnik (OA)

Files in This Item:
File Description SizeFormat 
13_KommA2023_P-5_Otto et al..pdfPaper314.28 kBAdobe PDFThumbnail
View/Open